Сернистый газ реакция взаимодействия с водой

Оксид серы (IV)

Оксид серы (IV) – это кислотный оксид . Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV)

1. Сжигание серы на воздухе :

2. Горение сульфидов и сероводорода:

2CuS + 3O2 → 2SO2 + 2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например , сульфит натрия взаимодействует с серной кислотой:

4. Обработка концентрированной серной кислотой неактивных металлов.

Например , взаимодействие меди с концентрированной серной кислотой:

Химические свойства оксида серы (IV)

Оксид серы (IV) – это типичный кислотный оксид. За счет серы в степени окисления +4 проявляет свойства окислителя и восстановителя .

1. Как кислотный оксид, сернистый газ реагирует с щелочами и оксидами щелочных и щелочноземельных металлов .

Например , оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2(изб) + NaOH → NaHSO3

Еще пример : оксид серы (IV) реагирует с основным оксидом натрия:

2. При взаимодействии с водой S O2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например , оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

Сернистый ангидрид обесцвечивает бромную воду:

Азотная кислота очень легко окисляет сернистый газ:

Озон также окисляет оксид серы (IV):

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

Оксид свинца (IV) также окисляет сернистый газ:

4. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства.

Например , при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

Оксид серы (IV) окисляет угарный газ и углерод:

SO2 + 2CO → 2СО2 + S

Источник

Сернистый газ реакция взаимодействия с водой

Сера — элемент VIa группы 3 периода периодической таблицы Д.И. Менделеева. Относится к группе халькогенов — элементов VIa группы.

Сера — S — простое вещество имеет светло-желтый цвет. Использовалась еще до нашей эры в составе священных курений при религиозных обрядах.

Основное и возбужденное состояние атома серы

Электроны s- и p-подуровня способны распариваться и переходить на d-подуровень. Как и всегда, количество валентных электронов отражает количество возможных связей у атома.

В разных электронных конфигурациях сера способна принимать валентности: II, IV и VI.

Природные соединения
  • FeS2 — пирит, колчедан
  • ZnS — цинковая обманка
  • PbS — свинцовый блеск (галенит), Sb2S3 — сурьмяный блеск, Bi2S3 — висмутовый блеск
  • HgS — киноварь
  • CuFeS2 — халькопирит
  • Cu2S — халькозин
  • CuS — ковеллин
  • BaSO4 — барит, тяжелый шпат
  • CaSO4 — гипс

В местах вулканической активности встречаются залежи самородной серы.

В промышленности серу получают из природного газа, который содержит газообразные соединения серы: H2S, SO2.

Серу можно получить разложением пирита

В лабораторных условиях серу можно получить слив растворы двух кислот: серной и сероводородной.

    Реакции с неметаллами

На воздухе сера окисляется, образуя сернистый газ — SO2. Реагирует со многими неметаллами, без нагревания — только со фтором.

При нагревании сера бурно взаимодействует со многими металлами с образованием сульфидов.

Реакции с кислотами

При взаимодействии с концентрированными кислотами (при длительном нагревании) сера окисляется до сернистого газа или серной кислоты.

Реакции с щелочами

Сера вступает в реакции диспропорционирования с щелочами.

Реакции с солями

Сера вступает в реакции с солями. Например, в кипящем водном растворе сера может реагировать с сульфитами с образованием тиосульфатов.

Сероводород — H2S

Бесцветный газ с характерным запахом тухлых яиц. Огнеопасен. Используется в химической промышленности и в лечебных целях (сероводородные ванны).

Сероводород получают в результате реакции сульфида алюминия с водой, а также взаимодействия разбавленных кислот с сульфидами.

Сероводород плохо диссоциирует в воде, является слабой кислотой. Реагирует с основными оксидами, основаниями с образованием средних и кислых солей (зависит от соотношения основания и кислоты).

KOH + H2S = KHS + H2O (гидросульфид калия, избыток кислоты)

Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

Сероводород — сильный восстановитель (сера в минимальной степени окисления S 2- ). Горит в кислороде синим пламенем, реагирует с кислотами.

Качественной реакцией на сероводород является реакция с солями свинца, при котором образуется сульфид свинца.

Оксид серы — SO2

Сернистый газ — SO2 — при нормальных условиях бесцветный газ с характерным резким запахом (запах загорающейся спички).

В промышленных условиях сернистый газ получают обжигом пирита.

В лаборатории SO2 получают реакцией сильных кислот на сульфиты. В ходе подобных реакций образуется сернистая кислота, распадающаяся на сернистый газ и воду.

Сернистый газ получается также в ходе реакций малоактивных металлов с серной кислотой.

С основными оксидами, основаниями образует соли сернистой кислоты — сульфиты.

Химически сернистый газ очень активен. Его восстановительные свойства продемонстрированы в реакциях ниже.

В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства (понижать степень окисления).

Сернистая кислота

Слабая, нестойкая двухосновная кислота. Существует лишь в разбавленных растворах.

Диссоциирует в водном растворе ступенчато.

В реакциях с основными оксидами, основаниями образует соли — сульфиты и гидросульфиты.

H2SO3 + KOH = H2O + KHSO3 (соотношение кислота — основание, 1:1)

С сильными восстановителями сернистая кислота принимает роль окислителя.

Как и сернистый газ, сернистая кислота и ее соли обладают выраженными восстановительными свойствами.

Оксид серы VI — SO3

Является высшим оксидом серы. Бесцветная летучая жидкость с удушающим запахом. Ядовит.

В промышленности данный оксид получают, окисляя SO2 кислородом при нагревании и присутствии катализатора (оксид ванадия — Pr, V2O5).

В лабораторных условиях разложением солей серной кислоты — сульфатов.

Является кислотным оксидом, соответствует серной кислоте. При реакции с основными оксидами и основаниями образует ее соли — сульфаты и гидросульфаты. Реагирует с водой с образованием серной кислоты.

SO3 + 2KOH = K2SO4 + 2H2O (основание в избытке — средняя соль)

SO3 + KOH = KHSO4 + H2O (кислотный оксид в избытке — кислая соль)

SO3 — сильный окислитель. Чаще всего восстанавливается до SO2.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Получение сероводорода

Химические свойства

Физические свойства

При обычных условиях сероводород – бесцветный газ, с сильным характерным запахом тухлых яиц. Тпл = -86 °С,Ткип = -60 °С, плохо растворим в воде, при 20 °С в 100 г воды растворяется 2,58 мл H2S. Очень ядовит, при вдыхании вызывает паралич, что может привести к смертельному исходу. В природе выделяется в составе вулканических газов, образуется при гниении растительных и животных организмов. Хорошо растворим в воде, при растворении образует слабую сероводородную кислоту.

  1. В водном растворе сероводород обладает свойствами слабой двухосновной кислоты:
  1. Сероводород горит в воздухе голубым пламенем. При ограниченном доступе воздуха образуется свободная сера:

При избыточном доступе воздуха горение сероводорода приводит к образованию оксида серы (IV):

  1. Сероводород обладает восстановительными свойствами. В зависимости от условий сероводород может окисляться в водном растворе до серы, сернистого газа и серной кислоты.

Например, он обесцвечивает бромную воду:

взаимодействует с хлорной водой:

Струю сероводорода можно поджечь, используя диоксид свинца, так как реакция сопровождается большим выделением тепла:

  1. Взаимодействие сероводорода с сернистым газом используется для получения серы из отходящих газов металлургического и сернокислого производства:

С этим процессом связано образование самородной серы при вулканических процессах.

  1. При одновременном пропускании сернистого газа и сероводорода через раствор щелочи образуется тиосульфат:
  1. Реакция разбавленной соляной кислоты с сульфидом железа (II)
  1. Взаимодействие сульфида алюминия с холодной водой
  1. Прямой синтез из элементов происходит при пропускании водорода над расплавленной серой:
  1. Нагревание смеси парафина с серой.

1.9. Сероводородная кислота и её соли

Сероводородной кислоте присущи все свойства слабых кислот. Она реагирует с металлами, оксидами металлов, основаниями.

Как двухосновная, кислота образует два типа солей – сульфиды и гидросульфиды. Гидросульфиды хорошо растворимы в воде, сульфиды щелочных и щелочно-земельных металлов также, сульфиды тяжелых металлов практически нерастворимы.

Сульфиды щелочных и щелочноземельных металлов не окрашены, остальные имеют характерную окраску, например, сульфиды меди (II), никеля и свинца – черные, кадмия, индия, олова – желтые, сурьмы – оранжевый.

Ионные сульфиды щелочных металлов M2S имеют структуру типа флюорита, где каждый атом серы окружен кубом из 8 атомов металла и каждый атом металла – тетраэдром из 4 атомов серы. Сульфиды типа MS характерны для щелочноземельных металлов и имеют структуру типа хлорида натрия, где каждый атом металла и серы окружен октаэдром из атомов другого сорта. При усилении ковалентного характера связи металл – сера реализуются структуры с меньшими координационными числами.

Сульфиды цветных металлов встречаются в природе как минералы и руды, служат сырьем для получения металлов.

Источник

Оксид серы (IV) SO2, сернистый газ

Взаимодействуя с кислородом, сера образует два оксида:

  • SO2 (IV) — сернистый газ (сернистый ангидрид, диоксид серы)
  • SO3 (VI) — серный ангидрид

Молекула сернистого газа сильно полярна, угловой формы (угол между связями составляет 119°):

Физические свойства сернистого газа:

  • бесцветный ядовитый газ с резким запахом;
  • в 2 раза тяжелее воздуха;
  • хорошо растворим в воде — при н.у. в 1 объеме воды растворяется 40 объемов SO2 (IV) с образованием сернистой кислоты.

Химические свойства сернистого газа

Сернистый газ является типичным кислотным оксидом.

  • сернистый газ реагирует с основаниями с образованием гидросульфитов (кислые соли) и сульфитов (средние соли):
  • реакции сернистого газа с основными оксидами:
  • с водой образует сернистую кислоту, которая существует только в растворе и относится к двухосновным кислотам:

Ступенчатая диссоциация сернистой кислоты с образованием гидросульфит-иона на первой ступени диссоциации, и сульфит-иона — на второй:

  • пример реакции сернистой кислоты в качестве восстановителя:
  • пример реакции сернистой кислоты в качестве окислителя:

Сернистая кислота может образовывать средние соли (сульфиты) — Na2SO3, и кислые соли (гидросульфиты) — NaHSO3.

В окислительно-восстановительных реакциях сернистый газ может выступать, как в роли окислителя (восстанавливаясь в S и H2S), так и в роли восстановителя (окисляясь в H2SO4), т.к. сера в этом соединении занимает промежуточную степень окисления +4.

  • в реакции с сероводородом сернистый газ является окислителем:
  • в реакции с кислородом при нагревании сернистый газ является восстановителем:

Получение и применение сернистого газа

В промышленности сернистый газ получают или сжиганием серы, или как побочный продукт обжига сульфидных руд, например, железного колчедана.

В лабораторных условиях диоксид серы можно получить действием концентрированных кислот на соли сернистой кислоты (гидросульфиты и сульфиты), а также в процессе реакции серной кислоты с тяжелым металлом.

Сернистый газ используют для:

  • получения оксида серы (VI);
  • получения серной кислоты;
  • получения сульфитов и гидросульфитов;
  • отбеливания тканей в текстильной промышленности;
  • уничтожения вредных микроорганизмов в качестве дезинфицирующего средства при консервировании продуктов питания.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Источник

Читайте также:  Как влияет вода боржоми
Оцените статью