Сероводород плюс вода уравнение реакции

Сероводород H2S и сульфиды- химические свойства

Физические свойства сероводорода:

Газ, бесцветный, с запахом тухлых яиц, ядовит, растворим в воде (в 1V H2O растворяется 3V H2S при н.у.); t°пл. = -86°C; t°кип. = -60°С.

Получение сероводорода:

1) Из простых веществ: H2 + S t° → H2S

2) Реакцией обмена: FeS + 2HCl→FeCl2 + H2

Химические свойства сероводорода:

1) Раствор H2S в воде – слабая двухосновная кислота.

Сероводородная кислота образует два ряда солей — средние (сульфиды) и кислые (гидросульфиды).

2) Взаимодействует с основаниями:

3) Качественная реакция на сероводород и растворимые сульфиды — образование темно-коричневого (почти черного) осадка PbS:

4) H2S проявляет очень сильные восстановительные свойства:

5) Сероводород окисляется кислородом:

при недостатке O2

6) Серебро при контакте с сероводородом чернеет:

Сульфиды — получение и химический свойства

Получение сульфидов:

1) Многие сульфиды получают нагреванием металла с серой:

Hg + S → HgS (при комнатной температуре)

2) Растворимые сульфиды получают действием сероводорода на щелочи:

3) Нерастворимые сульфиды получают обменными реакциями:

Химические свойства сульфидов:

1) Растворимые сульфиды сильно гидролизованы, вследствие чего их водные растворы имеют щелочную реакцию:

S 2- + H2O ↔ HS — + OH —

2) Нерастворимые сульфиды можно перевести в растворимое состояние действием концентрированной HNO3:

3) Водорастворимые сульфиды растворяют серу с образованием полисульфидов:

Полисульфиды при окислении превращаются в тиосульфаты, например:

Источник

Сероводород

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1 о .

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

В избытке кислорода:

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

Либо до оксида серы (IV):

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Источник

H2S + H2O = ? уравнение реакции

Составьте химическое уравнение по схеме H2S + H2O = ? Охарактеризуйте химическое соединение сероводород: укажите его основные физические и химические свойства, а также способы получения.

Сероводород в обычных условиях представляет собой бесцветный газ с характерным запахом гниющего белка. Он немного тяжелее воздуха и горит голубоватым пламенем, образуя диоксид серы и воду:

Сероводород легко воспламеняется; смесь его с воздухом взрывает. Очень ядовит. При один объем воды растворяет 2,5 объема сероводорода, однако при этом он не реагирует с ней, т.е. записать уравнение реакции по схеме H2S + H2O = ? невозможно. Раствор сероводорода в воде называется сероводородной водой.
Сероводород – сильный восстановитель. При действии сильных окислителей он окисляется до диоксида серы или до серной кислоты; глубина окисления зависит от условий: температуры, рН раствора, концентрации окислителя. Например, реакция с хлором обычно протекает до образования серной кислоты:

В лабораторных условиях для получения сероводорода наиболее часто используют следующие реакции:
— действие разбавленных растворов кислот на сульфиды

— взаимодействие сульфида алюминия с водой

Пожалуйста, зарегистрируйтесь или войдите, чтобы добавить ответ.

Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.

Источник

Сероводород, свойства, получение и применение

Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.

Сероводород, формула, молекула, строение, состав, вещество:

Сероводород (сернистый водород, сульфид водорода, дигидросульфид) – бесцветный газ со сладковатым вкусом с характерным неприятным тяжёлым запахом тухлых яиц (тухлого мяса).

Сероводород – бинарное химическое соединение водорода и серы, имеющее формулу H2S.

Химическая формула сероводорода H2S.

Строение молекулы сероводорода, структурная формула сероводорода:

Сероводород – наиболее активное из серосодержащих соединений.

Сероводород тяжелее воздуха. Его плотность составляет 1,539 кг/м 3 , по отношении к воздуху – 1,19. Поэтому скапливается в низких непроветриваемых местах.

Сероводород плохо растворяется в воде. Раствор сероводорода в воде – очень слабая сероводородная кислота. Хорошо растворим в бензоле и этаноле.

Термически устойчив при температурах менее 400 °C. При температурах более 400 °C разлагается на составляющие – простые вещества: водород и серу.

В отличие от воды, в сероводороде не образуются водородные связи, поэтому сероводород в обычных условиях не сжижается.

Сероводород является сверхпроводником при температуре 203 К (-70 °C) и давлении 150 ГПа.

Сероводород коррозионно активен, поэтому предъявляются дополнительные требования при разработке нефтяных, газовых и газоконденсатных месторождений, содержащий сероводород.

Чрезвычайно огнеопасен. Смеси сероводорода и воздуха взрывоопасны. Возможно возгорание на расстоянии. Горит синим пламенем.

Соли сероводородной кислоты (раствор сероводорода в воде) называют сульфидами. В воде хорошо растворимы только сульфиды щелочных металлов, аммония. Сульфиды остальных металлов практически не растворимы в воде, они выпадают в осадок в ходе химических реакций. Многие сульфиды ярко окрашены. Многие природные сульфиды в виде минералов являются ценными рудами (пирит, халькопирит, киноварь, молибденит).

Сероводород в природе встречается редко, в незначительных количествах в составе природного газа, попутного нефтяного газа, сланцевого газа, а также в вулканических газах, в растворённом виде – в нефти, сланцевой нефти и в природных водах. Например, в Чёрном море слои воды, расположенные глубже 150-200 м, содержат растворённый сероводород (концентрация 14 мл/л).

Образуется при гниении белков, которые содержат в составе серосодержащие аминокислоты метионин и (или) цистеин. Небольшое количество сероводорода содержится в кишечных газах человека и животных.

Сероводород высокотоксичен и ядовит. Предельно допустимая концентрация (ПДК) сероводорода в воздухе населенных пунктов в России – 0,008 мг/м 3 , в России – 0,007 мг/м 3 .

Порог ощутимости запаха составляет 0,012-0,03 мг/м 3 . При вдыхании воздуха с небольшими концентрациями у человека довольно быстро возникает адаптация к неприятному запаху «тухлых яиц» и он перестаёт ощущаться. Во рту возникает сладковатый металлический привкус. При вдыхании воздуха с большой концентрацией из-за паралича обонятельного нерва запах сероводорода почти сразу перестаёт ощущаться.

При острых отравлениях возникает жжение и боль в горле при глотании, конъюнктивит, одышка, головная боль, головокружение, слабость, рвота, тахикардия, возможны судороги. Смертельная концентрация составляет 830 мг/м 3 в течение 30 минут или 1100 мг/м 3 в течение 5 минут.

При высокой концентрации сероводорода однократное вдыхание может вызвать мгновенную смерть.

Физические свойства сероводорода:

Наименование параметра: Значение:
Химическая формула H2S
Синонимы и названия иностранном языке hydrogen sulfide (англ.)

водород сернистый (рус.)

водорода сульфид (рус.)

сероводородная кислота (рус.) Тип вещества неорганическое Внешний вид бесцветный газ Цвет бесцветный Вкус сладковатый Запах неприятный тяжёлый запах тухлых яиц (тухлого мяса) Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) газ Плотность (состояние вещества – твердое вещество, при -86 °C), кг/м 3 1120 Плотность (состояние вещества – твердое вещество, при -86 °C), г/см 3 1,12 Плотность (состояние вещества – жидкость, при -81 °C), кг/м 3 938 Плотность (состояние вещества – жидкость, при -81 °C), г/см 3 0,938 Плотность (состояние вещества – газ, при 0 °C), кг/м 3 1,539 Плотность (состояние вещества – газ, при 0 °C), г/см 3 0,001539 Температура кипения, °C -60,28 Температура плавления, °C -85,6 Температура самовоспламенения, °C 260 Критическая температура*, °C 100,4 Критическое давление, МПа 9,01 Критический удельный объём, м 3 /кг 349 Взрывоопасные концентрации смеси газа с воздухом, % объёмных 4,3 – 46 Молярная масса, г/моль 34,082 Растворимость в воде (20 o С), г/100 г 0,379 Сверхпроводимость -70 °C, давление 150 ГПа

* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.

Получение сероводорода:

Сероводород в лаборатории получают в результате следующих химических реакций:

  1. взаимодействия разбавленных кислот с сульфидами, например, с сульфидом железа.
  2. взаимодействия сульфида алюминия и воды:

Данная реакция отличается чистотой полученного сероводорода

Химические свойства сероводорода. Химические реакции (уравнения) сероводорода:

Основные химические реакции сероводорода следующие:

1. реакция взаимодействия сероводорода и брома:

В результате реакции образуются бромоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.

2. реакция взаимодействия сероводорода и йода:

В результате реакции образуются йодоводород и сера. В ходе реакции используется насыщенный раствор сероводорода.

3. реакция взаимодействия сероводорода и кислорода:

В результате реакции образуются сера и вода. Реакция протекает медленно на свету, в растворе или в газовой фазе. Сероводород в ходе реакции используется в виде насыщенного раствора. На данной реакции основан промышленный способ получения серы.

4. реакция горения сероводорода:

В результате реакции образуются оксид серы и вода. Реакция горения сероводорода на воздухе.

5. реакция взаимодействия сероводорода и озона:

В результате реакции образуются оксид серы и вода. Сероводород в ходе реакции используется в виде газа.

6. реакция взаимодействия сероводорода и кремния:

В результате реакции образуются сульфид кремния и водород.

7. реакция взаимодействия сероводорода и цинка:

В результате реакции образуются сульфид цинка и водород.

8. реакция взаимодействия сероводорода и алюминия:

В результате реакции образуются сульфид алюминия и водород.

9. реакция взаимодействия сероводорода и галлия:

В результате реакции образуются сульфид галлия и водород.

10. реакция взаимодействия сероводорода и молибдена:

В результате реакции образуются сульфид молибдена и водород.

11. реакция взаимодействия сероводорода и бария:

В результате реакции образуются сульфид бария и водород.

12. реакция взаимодействия сероводорода и магния:

В результате реакции образуются сульфид магния и водород.

13. реакция взаимодействия сероводорода и германия:

В результате реакции образуются сульфид германия и водород.

14. реакция взаимодействия сероводорода и кобальта:

В результате реакции образуются сульфид кобальта и водород.

15. реакция взаимодействия сероводорода и серебра:

В результате реакции образуются сульфид серебра и водород.

16. реакция взаимодействия сероводорода и оксида лития:

В результате реакции образуются сульфид лития и вода.

17. реакция взаимодействия сероводорода и оксида цинка:

ZnO + H2S ZnS + H2O (t = 450-550 °C).

В результате реакции образуются сульфид цинка и вода.

18. реакция взаимодействия сероводорода и оксида железа:

В результате реакции образуются сульфид железа и вода.

19. реакция взаимодействия сероводорода и оксида молибдена:

В результате реакции образуются сульфид молибдена и вода.

20. реакция взаимодействия сероводорода и гидроксида натрия:

В результате реакции образуются сульфид натрия и вода. В ходе реакции используется концентрированный раствор гидроксида натрия.

21. реакция взаимодействия сероводорода и гидроксида бария:

В результате реакции образуются сульфид бария и вода. В ходе реакции используется разбавленный раствор сероводорода.

22. реакция взаимодействия сероводорода и гидроксида меди:

В результате реакции образуются сульфид меди и вода. В ходе реакции используется насыщенный раствор сероводорода и гидроксид меди в виде суспензии.

23. реакция взаимодействия сероводорода и азотной кислоты:

В результате реакции образуются сера, оксид азота и вода. В ходе реакции используется насыщенный раствор сероводорода и концентрированный холодный раствор азотной кислоты.

Аналогичные реакции протекают и с другими минеральными кислотами.

24. реакция взаимодействия сероводорода и карбоната кальция:

В результате реакции образуются сульфид кальция, оксид углерода и вода.

25. реакция взаимодействия сероводорода и карбоната бария:

В результате реакции образуются сульфид бария, оксид углерода и вода.

26. реакция взаимодействия сероводорода и карбоната натрия:

В результате реакции образуются гидросульфид натрия и гидрокарбонат натрия. В ходе реакции используется насыщенный раствор сероводорода.

27. реакция взаимодействия сероводорода и нитрата серебра:

В результате реакции образуются сульфид серебра и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.

28. реакция взаимодействия сероводорода и нитрата висмута:

В результате реакции образуются сульфид висмута и азотная кислота. В ходе реакции используется насыщенный раствор сероводорода.

29. реакция взаимодействия сероводорода и нитрата свинца:

В результате реакции образуются сульфид свинца и азотная кислота. Данная реакция является качественной реакцией на сероводород. В результате реакции образуются соль свинца – сульфид свинца черного цвета, который выпадает в осадок.

30. реакция термического разложения сероводорода:

В результате реакции образуются водород и сера. В ходе реакции используется насыщенный раствор сероводорода.

Применение сероводорода:

Из-за своей токсичности сероводород находит ограниченное применение:

  • в аналитической химии сероводород и сероводородная вода используются как реагенты для осаждения тяжёлых металлов, сульфиды которых очень слабо растворимы;
  • в медицине в составе природных и искусственных сероводородных ванн, а также в составе некоторых минеральных вод;
  • в химической промышленности для получения серной кислоты, элементной серы, сульфидов;
  • в органическом синтезе для получения тиофена и меркаптанов.

В последние годы рассматривается возможность использования сероводорода, накопленного в глубинах Чёрного моря, в качестве энергетического (сероводородная энергетика) и химического сырья.

В следующем видео показана лабораторная установка для получение сероводорода и опытов с ним:

Альтернативный способ получения сероводорода в лаборатории:

Источник

Читайте также:  Ошпаривающая вода 3 буквы
Оцените статью