- Сероводород
- Сероводород
- Строение молекулы и физические свойства
- Способы получения сероводорода
- Химические свойства сероводорода
- Сероводородная вода азотная кислота
- Летучие водородные соединения
- Строение и физические свойства
- Способы получения силана
- Способы получения аммиака
- Способы получения фосфина
- Способы получения сероводорода
- Химические свойства силана
- Химические свойства фосфина
- Химические свойства сероводорода
- Химические свойства прочих водородных соединений
Сероводород
Сероводород
Строение молекулы и физические свойства
Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.
Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1 о .
Способы получения сероводорода
1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.
Например , при действии соляной кислоты на сульфид железа (II):
FeS + 2HCl → FeCl2 + H2S↑
Еще один способ получения сероводорода – прямой синтез из водорода и серы:
Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.
Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.
2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.
Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:
Химические свойства сероводорода
1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:
Например , сероводород реагирует с гидроксидом натрия:
H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O
2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):
В избытке кислорода:
3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.
Например, бром и хлор окисляют сероводород до молекулярной серы:
H2S + Br2 → 2HBr + S↓
H2S + Cl2 → 2HCl + S↓
Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
Например , азотная кислота окисляет сероводород до молекулярной серы:
При кипячении сера окисляется до серной кислоты:
Прочие окислители окисляют сероводород, как правило, до молекулярной серы.
Например , оксид серы (IV) окисляет сероводород:
Соединения железа (III) также окисляют сероводород:
H2S + 2FeCl3 → 2FeCl2 + S + 2HCl
Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:
Серная кислота окисляет сероводород либо до молекулярной серы:
Либо до оксида серы (IV):
4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.
Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:
Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.
Источник
Сероводородная вода азотная кислота
Для выполнения задания используйте следующий перечень веществ: азотная кислота, сероводород, нитрат калия, хлорид натрия, нитрат свинца (II). Допустимо использование водных растворов веществ.
Из предложенного перечня веществ выберите вещества, между которыми возможна окислительно-восстановительная реакция, и запишите уравнение этой реакции. Составьте электронный баланс, укажите окислитель и восстановитель.
Для выполнения задания используйте следующий перечень веществ: азотная кислота, сероводород, нитрат калия, хлорид натрия, нитрат свинца (II). Допустимо использование водных растворов веществ.
Из предложенного перечня веществ выберите вещества, между которыми возможна реакция ионного обмена. Запишите молекулярное, полное и сокращённое ионное уравнения этой реакции.
Можно же еще вариант: нитрат свинца+хлорид натрия= хлорид свинца в осадке
Запишем уравнение реакции концентрированной азотной кислоты и сероводорода:
Составим электронный баланс:
Сера в степени окисления −2 (сероводород) является восстановителем. Азот в степени окисления +5 (азотная кислота) — окислителем.
Критерии оценивания выполнения задания | Баллы | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ответ правильный и полный, содержит следующие элементы: — выбраны вещества, и записано уравнение окислительно-восстановительной реакции; Источник Летучие водородные соединенияСоединения водорода с неметаллами — летучие водородные соединения. Это метан, силан, аммиак, фосфин, арсин, сероводород, вода, галогеноводороды. Способы получения и химические свойства. Строение и физические свойстваВсе летучие водородные соединения — газы (кроме воды) при нормальных условиях.
Способы получения силанаСилан образуется при взаимодействии соляной кислоты с силицидом магния: Видеоопыт получения силана из силицида магния можно посмотреть здесь. Способы получения аммиакаВ лаборатории аммиак получают при взаимодействии солей аммония с щелочами. Поск ольку аммиак очень хорошо растворим в воде, для получения чистого аммиака используют твердые вещества. Например , аммиак можно получить нагреванием смеси хлорида аммония и гидроксида кальция. При нагревании смеси происходит образование соли, аммиака и воды: Тщательно растирают ступкой смесь соли и основания и нагревают смесь. Выделяющийся газ собирают в пробирку (аммиак — легкий газ и пробирку нужно перевернуть вверх дном). Влажная лакмусовая бумажка синеет в присутствии аммиака. Видеоопыт получения аммиака из хлорида аммония и гидроксида кальция можно посмотреть здесь. Еще один лабораторный способ получения аммиака – гидролиз нитридов. Например , гидролиз нитрида кальция: В промышленности аммиак получают с помощью процесса Габера: прямым синтезом из водорода и азота. Процесс проводят при температуре 500-550 о С и в присутствии катализатора. Для синтеза аммиака применяют давления 15-30 МПа. В качестве катализатора используют губчатое железо с добавками оксидов алюминия, калия, кальция, кремния. Для полного использования исходных веществ применяют метод циркуляции непрореагировавших реагентов: не вступившие в реакцию азот и водород вновь возвращают в реактор. Более подробно про технологию производства аммиака можно прочитать здесь. Способы получения фосфинаВ лаборатории фосфин получают водным или кислотным гидролизом фосфидов – бинарных соединений фосфора и металлов. Например , фосфин образуется при водном гидролизе фосфида кальция: Или при кислотном гидролизе, например , фосфида магния в соляной кислоте: Еще один лабораторный способ получения фосфина – диспропорционирование фосфора в щелочах. Например , фосфор реагирует с гидроксидом калия с образованием гипофосфита калия и фосфина: Способы получения сероводорода1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа. Например , при действии соляной кислоты на сульфид железа (II): FeS + 2HCl → FeCl2 + H2S↑ Еще один способ получения сероводорода – прямой синтез из водорода и серы: Еще один лабораторный способ получения сероводорода – нагревание парафина с серой. Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь. 2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе. Например: х лорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия: Химические свойства силана1. Силан — неустойчивое водородное соединение (самовоспламеняется на воздухе). При сгорании силана на воздухе образуется оксид кремния (IV) и вода: Видеоопыт сгорания силана можно посмотреть здесь. 2. Силан разлагается водой с выделением водорода: 3. Силан разлагается (окисляется) щелочами : 4. Силан при нагревании разлагается : Химические свойства фосфина1. В водном растворе фосфин проявляет очень слабые основные свойства (за счет неподеленной электронной пары). Принимая протон (ион H + ), он превращается в ион фосфония. Основные свойства фосфина гораздо слабее основных свойств аммиака. Проявляются при взаимодействии с безводными кислотами . Например , фосфин реагирует с йодоводородной кислотой: Соли фосфония неустойчивые, легко гидролизуются. 2. Фосфин PH3 – сильный восстановитель за счет фосфора в степени окисления -3. На воздухе самопроизвольно самовоспламеняется: 3. Как сильный восстановитель, фосфин легко окисляется под действием окислителей. Например , азотная кислота окисляет фосфин. При этом фосфор переходит в степень окисления +5 и образует фосфорную кислоту. Серная кислота также окисляет фосфин: С фосфином также реагируют другие соединения фосфора, с более высокими степенями окисления фосфора. Например , хлорид фосфора (III) окисляет фосфин: 2PH3 + 2PCl3 → 4P + 6HCl Химические свойства сероводорода1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды: Например , сероводород реагирует с гидроксидом натрия: H2S + 2NaOH → Na2S + 2H2O 2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет): В избытке кислорода: 3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей. Например, бром и хлор окисляют сероводород до молекулярной серы: H2S + Br2 → 2HBr + S↓ H2S + Cl2 → 2HCl + S↓ Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты: Например , азотная кислота окисляет сероводород до молекулярной серы: При кипячении сера окисляется до серной кислоты: Прочие окислители окисляют сероводород, как правило, до молекулярной серы. Например , оксид серы (IV) окисляет сероводород: Соединения железа (III) также окисляют сероводород: H2S + 2FeCl3 → 2FeCl2 + S + 2HCl Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы: Серная кислота окисляет сероводород либо до молекулярной серы: Либо до оксида серы (IV): 4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах. Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах: Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы. Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь. Химические свойства прочих водородных соединенийКислоты образуют в водном растворе: водородные соединения VIA (кроме воды) и VIIA подгрупп. Прочитать про химические свойства галогеноводородов вы можете здесь. Источник |