Сколько метров под водой летит пуля

Очередь под водой

Так уж получилось, что типов огнестрельного оружия, предназначенного для применения под водой, было разработано немного. К тому же не все они смогли дойти до серийного производства. Главная проблема, с которой приходилось биться конструкторам-оружейникам, заключалась в плотности воды. Шутка ли, почти в 800 раз плотнее воздуха и взаимодействует с пулей соответствующе. Сопротивление воды просто не дает пулям имеющихся патронов разгоняться до более-менее приличных скоростей и лететь (или проплывать) хоть сколько-нибудь приемлемое расстояние. Так что боевым пловцам приходилось довольствоваться тем, что есть – на воздухе пользоваться «обычным» оружием, а под водой доставать ножи.

Но в 1971 году на вооружение советских спецподразделений поступили пистолет СПП-1М и патрон СПС. Главная их особенность, которая, собственно, и позволила получить требуемые характеристики огня, — пуля. Для более стабильного поведения в воде ее сделали длинной и похожей на гвоздь.
Немного позже, в середине 70-х, Климовский ЦНИИТочмаш разработал свой вариант «игольного» патрона. Конструктор В. Симонов на базе гильзы стандартного патрона 5,45х39 мм создал патрон МПС. Как и у СПС, пуля Климовского патрона имела длину около 120 мм. Также характерной особенностью пули является затупленная головная часть – при движении в воде она создает кавитационную полость, которая резко снижает сопротивление воды. Таким способом заодно была решена проблема стабилизации пули при движении в воде. После ряда изысканий было решено изменить калибр пули с 5,45 до 5,66 мм. Вернее, ничего изменять не пришлось. Ствол автомата, предназначенного для патрона МПС, должен был быть гладким, а настоящий калибр пули патрона 5,45х39 мм равен именно 5,66 миллиметрам. Это позволило также улучшить герметизацию стыка «пуля-гильза». Немного позже был создан патрон МПСТ, отличающийся от оригинала наличием трассера.

Читайте также:  Вода взаимодействие с оксидами активных металлов

Одновременно с патроном МПС в разработке находился автомат подводный специальный (АПС). Этот автомат был построен на основе газоотводной схемы. Запирание у АПС производится поворотом затвора. На первый взгляд, ничего необычного, однако конструкторам под руководствам В. Симонова пришлось подумать над некоторыми деталями. Во-первых, над подачей гораздо более длинного патрона. Второй вопрос: обеспечение работоспособности АПС и под водой, и на воздухе. Первую проблему решили при помощи магазина специфической формы (см. фото) на 26 патронов и длинного хода затвора. Из-за этого предохранитель-переводчик огня пришлось разместить не на правой стороне ствольной коробки, как у автоматов Калашникова, а на левой. Для возможности функционирования оружия в двух средах конструкторы ввели в газоотводную систему автоматический газовый регулятор. При стрельбе на воздухе он сбрасывает часть пороховых газов. В воде, соответственно, пулю разгоняет полное количество газов. Газорегулятор понадобился по той причине, что при подводной стрельбе пуле требуется больше энергии для вылета из ствола – пуля должна вытолкнуть из последнего воду. Ударно-спусковой механизм имеет одну возвратно-боевую пружину и позволяет делать как одиночные выстрелы, так и очереди. Вся механика автомата приспособлена для работы в «вязкой» водной среде.

Прицельные приспособления АПС самые простейшие: открытый нерегулируемый целик на ствольной коробке и мушка на газоотводной трубке. АПС также имеет выдвижной приклад. Что интересно, в полностью убранном положении рамка плечевого упора полностью ложится в специальные вырезы на рукоятке управления огнем. Спусковая скоба и крючок были сделаны относительно большими, чтобы боец мог стрелять, не снимая перчаток.

Что же дали все эти пули-гвозди, газорегуляторы и т.д.? Под водой, на глубине около 5 метров, эффективная дальность огня составляет 30 м. Глубже, на 20 метрах, стрелять можно уже только на 20. При этом в обоих случаях энергии «гвоздя» хватает на пробитие гидрокостюма с поролоновой подкладкой либо очков из оргстекла (до 5-7 мм) и на последующее поражение тела противника. Что интересно, обычно под водой видимость не превышает дальность стрельбы АПС. На воздухе убойная сила пули сохраняется на дальности до ста метров. Однако пуля, неприспособленная для воздушной среды, на таких расстояниях дает просто неприличное отклонение. Так что реальная дальность боя для АПС на воздухе не сильно отличается от аналогичного показателя в воде, что для большинства перестрелок мало. Еще один довод против использования АПС не в воде – ресурс. Автомат, способный выстрелить под водой 2000 раз, на воздухе может сделать только 180 выстрелов – дань оптимизации для работы под водой.

Почти сразу АПС был принят на вооружение. Производство наладили на Тульском оружейном заводе, и оно ведется небольшими сериями. На данный момент официально автомат состоит на вооружении только в России. Зарубежные страны имеют возможность заказать АПС через Рособоронэкспорт, однако до сих пор их они только высказывали возможность закупок.

Несмотря на свою уникальность, АПС имеет и недостатки. В частности, недостаток тактический: вооруженные им боевые пловцы, если им придется вести и «сухопутный» бой, вынуждены нести лишний вес в виде еще одного автомата. На вид решение было очевидным – сделать автомат-амфибию, но на деле все было сложнее. На создание такой двухсредной системы ушло очень много времени, и первый ее экземпляр был представлен только в конце 90-х годов. Эксперименты по «скрещиванию» АПС и АК-74 велись в Тульском Проектно-конструкторском технологическом институте машиностроения (ТПКТИМаш) под руководством конструктора Ю. Данилова. От подводного предшественника новый автомат, названный АСМ-ДТ «Морской лев», получил большую часть элементов конструкции, а от автомата Калашникова патрон 5,45х39 мм и магазин. Затвор, газоотводная система и УСМ перекочевали с АПС на АСМ-ДТ без изменений, зато был доработан патрон. В ту же самую гильзу, на основе которой был сделан МПС, была помещена новая пуля, также похожая на гвоздь, также с затупленным концом, но меньшего калибра. С 5,6 миллиметров ее уменьшили до 5,45. И вот почему. Поскольку автомат изначально разрабатывался как двухсредный, конструкторы учитывали его возможности для боя на воздухе. Патрон 5,45х39 мм для нормальных характеристик потребовал нарезного ствола, так что было решено «ужать» пулю-гвоздь до таких размеров, при которых она могла бы попросту не врезаться в нарезы ствола.

Боепитание АСМ-ДТ под водой осуществляется из магазинов автомата АПС (26 патронов). На воздухе, соответственно, применяются магазины от автоматов Калашникова 74-й серии (30 патронов). Поскольку эти магазины, как и патроны, имеют различные габариты, приемник магазинов получил весьма интересную конструкцию. Если нужно пристыковать «подводный» магазин, специальная подпружиненная крышка (закреплена внизу ствольной коробки на левой стороне) отводится в сторону, магазин вставляется на посадочное место и фиксируется защелкой. Если боец собирается стрелять патронами 5,45х36 мм, то защелка магазина сдвигается до упора вперед, а подпружиненная крышка закрывает «лишнюю» часть окна приемника магазина. Помимо защиты механики автомата от грязи, крышка не дает защелке магазина сдвигаться назад. Еще один нюанс двухсредности заключается в следующем: при выстреле на воздухе часть пороховых газов перенаправляется в ствол перед пулей, чтобы продуть его от возможно оставшейся там воды.

Прицельные приспособления «Морского льва» в целом аналогичны АПС, но есть возможность установки оптического, ночного или коллиметорного прицела. Также конструкторы предусмотрели посадочные места для подствольного гранатомета, тактического фонаря или ЛЦУ и штык-ножа.

Тем не менее «урожденный» автомат-амфибия АСМ-ДТ в серию так и не пошел. Основные претензии касались необходимости оперировать двумя типами патронов и магазинов. На основе «Морского льва» на ТПКТИМаше начали разработку нового автомата АДС. Главным его отличием от АСМ-ДТ была компоновка буллпап.

В 2005 году тульское КБ Приборостроения представило новый универсальный патрон под обозначением ПСП. Он, как и предыдущие подводные боеприпасы, делался на базе гильзы «сухопутного» патрона 5,45х39 мм. Сотрудники КБП смогли вписать в нее новую стальную пулю весом 16 грамм. Длина пули – 53 мм. При этом конструкторам удалось сохранить боевые характеристики пули за счет большого удлинения и плоской носовой части пули. Как и «гвоздь» СПС и МПС, новая пуля в воде создает вокруг себя кавитационную полость. В то же время в воздухе пуля от ПСП себя ведет так же, как и стандартная. Кроме того, ПСП имеет те же габариты, что и стандартный патрон 5,45х39 мм, что позволяет использовать его не только в новом подводном автомате. Также был создан патрон ПСП-У с бронзовой пулей весом 8 граммов, предназначенный для учебных целей.

После появления ПСП коллектив Ю. Данилова решил окончательно отказаться от двух различных боеприпасов для разных сред и делать автомат заново под единый патрон. Одновременно с этим для новой версии АДС был выбран и новый прототип – автомат А-91, разработанный Тульским КБП в начале 90-х. Автомат-амфибия получил от А-91 общую компоновку схемы буллпап и большое количество пластиковых деталей. Также конструкторы оставили трубку, отводящую стреляные гильзы, что позволяет пользоваться автоматом и правшам, и левшам. Затвор и УСМ также не претерпели сильных изменений, помимо доработки для эксплуатации в воде. Зато была переработана газоотводная система: на ствольной коробке появился переключатель режимов «вода-воздух». Как и АСМ-ДТ, АДС в режиме «воздух» сбрасывает избыточные для надводной стрельбы объемы пороховых газов и продувает ими ствол перед пулей.

Благодаря габаритам патрона ПСП на автомате АДС используются магазины от АК-74 на 30 патронов. В том числе и благодаря этому АДС может использовать не только ПСП, но и патроны 7Н6, 7Н10 и т.д., с той разницей, что последние нельзя использовать под водой. Подводные характеристики АДС с патронами ПСП остались на уровне АПС – дальность 28-30 метров на глубине 5 м и 18-20 м на глубине в 20 метров. «Сухопутные» цифры, в свою очередь, выросли и немногим уступают характеристикам автоматов Калашникова 74-й серии. Так, например, прицельная дальность АДС на воздухе составляет не 30 метров, как у АПС, а все 600.

Ввиду компоновки буллпап, на автомате А-91 и, как следствие, на АДС присутствует ручка для переноски. На ней же устанавливается открытый целик. Мушка располагается на стволе. На саму ручку возможно установить оптический, коллиматорный либо любой другой совместимый прицел. Еще одна деталь, доставшаяся АДС в наследство от А-91, – интегрированный гранатомет калибра 40 мм. Гранатомет может использовать все модификации гранат ВОГ-25. Спусковой крючок гранатомета расположен под одной скобой со спусковым крючком автомата (см. фото). Если боец не нуждается в гранатомете, можно демонтировать его ствол с расположенным на нем прицелом. При снятом стволе гранатомета на ствол автомата можно установить прибор бесшумной стрельбы либо насадку для холостой стрельбы.

Таким образом, инженеры ТПКТИМаша создали целый комплекс, который в перспективе может заменить сразу несколько типов оружия спецподразделений: автоматы АПС и АК-74М, а также подствольные гранатометы ГП-25 и ГП-30. При этом единый комплекс АДС, при сходных с прочими типами характеристиках, имеет преимущества в массогабаритном отношении: один автомат с несколькими деталями «обвеса» транспортировать и использовать удобнее и проще, чем сразу несколько разных вооружений. И, похоже, тулякам действительно удалось угодить спецназу: в 2009 году АДС поступил на испытания в спецподразделения флота, и известно, что комплекс заслужил немало положительных отзывов.

Источник

Какое расстояние могут проплыть в воде пистолетные и автоматные пули? И с какой скоростью?

Принцип движения пули в воде

В воде имеется растворенный воздух, который выделяется из нее при нагревании и повышении давления. Эффект выделения воздуха из воды можно наблюдать при воздействии гребного винта – при надавливании на воду лопасти, из воды выделяется воздух, который наблюдатель видит в виде «кипения, бурун и т. д.» . Этот эффект использован и в данном случае. Пуля автомата АПС представляет собой стальной стержень длиной 120 мм и диаметром 5,6 мм, который сужается к головной части и заканчивается плоским срезом диаметром около 2 мм. Пуля имеет значительную массу и с большой силой, обладая большой кинетической энергией, воздействует на воду на площади плоского среза (диаметром около 2 мм) . Под воздействием давления, из воды выделяется воздух, который формирует вытянутую каверну с давлением воздуха внутри нее порядка 0,01-0,1 атмосферы
Стабилизация по направлению движения пули (сохранение направления) осуществляется за счет постоянного биения задней части пули о стенки каверны. После прохождения пули, каверна схлопывается, оставляя после себя мелкие пузырьки воздуха. Пуля будет продолжать сохранять достаточно большую скорость, пока скорость не упадет ниже критического значения. Популярно объясняя, каверна «схватит пулю за ее заднюю часть» и трение о воду резко возрастет, что приведет к торможению и остановке. Снижение дальности стрельбы с глубиной погружения обусловлено различным давлением воды на разных глубинах и как следствие, изменением условий для формирования каверны.

Источник

https://fenix-life.ru

Выживание и безопасность.

Поиск гугл

Рубрики

Свежие записи

Популярность статей

Свежие комментарии

  • Петрович к записи Разрывное течение или тягун. Опасность и причины возникновения.
  • Петрович к записи Цунами. Причины возникновения цунами, последствия цунами.

Выстрел в воду. Спастись от пули под водой. Рикошет.

Выстрел в воду, как явление, или результаты выстрела в воду рассмотрим в двух аспектах.

Первый аспект — с точки зрения выживания, то есть наличие возможности спастись от пули под водой.

Второй аспект — с точки зрения безопасности, то есть вероятность и опасность возникновения рикошета пули при выстреле в воду.

Серьезных исследований этих явлений опубликовано не так уж много.

Опереться, здесь, можно на исследование Центра независимых экспертиз на автотранспорте, «ЦНЭАТ», в г. Самара, результаты которого были опубликованы в 2006 году.

Интерес представляет и исследование «разрушителей легенд» на телеканале «Дискавери». В нем немного «статистики», но оно наглядно и хорошо иллюстрирует возможность спастись от пули под водой при выстреле в воду.

Прежде всего следует заметить, что из-за высокой плотности воды, при выстреле в воду, пуля испытывает значительно большее сопротивление чем в воздухе и ведет себя не так как при движении в воздушной среде.

При скорости пули уже 100 м/сек. с водной поверхностью она встречается как с твердым препятствием, что и дает возможность спастись от пули под водой.

Вывод этот подтверждается исследованиями, результаты которых, кратко, выглядят следующим образом.

Выстрел в воду.

При исследовании в Самасрском ЦНЭАТ выстрел в воду производился из различного стрелкового оружия: — пулемета ПК, автоматов АКМ и АК-74, пистолетов ПМ, Браунинг НР, ТТ их штатными боеприпасами.

У части пуль спиливалась вершинка и формировалась плоская головная часть, так как известно, что экспансивная пуля с плоской головной частью при выстреле в воду ведет себя не так как обычная пуля.

Угол вхождения при выстреле в воду измерялся между вертикалью и направлением полета пули (угол ά на рисунке).

Пороховые газы при выстреле в воду отсекались легкой преградой (цифра 2 на рисунке), так как формируемая ими при близком выстреле полость снижает возможность рикошета.

В результате эксперимента было установлено:

1. Угол выстрела в воду влияет на глубину проникновения пули в толщу воды и возможность возникновения рикошета.

2. При угле выстрела в воду равном 11°40″ в половине случаев рикошет происходит. При изменении угла выстрела в воду соотношение это изменяется в ту или другую сторону.

3. Так, при увеличении угла выстрела в воду частота рикошета увеличивается и при угле 12°00″ он присутствует в 100% случаев.

4. Рикошет не происходит при значении угла 11°15″ и менее.

5. Глубина проникновения пули в толщу воды перед рикошетом составляет 10 — 20 см.

Причины неглубокого проникновения пули при выстреле в воду следующие:

— Вода тормозит пулю даже больше чем дерево твердых пород и останавливает ее очень быстро.

— Некоторое продвижение пули обеспечивается явлением кавитации, когда при высокой скорости в водной среде пуля создает вокруг себя оболочку из пузырьков воздуха и водяного пара — так называемую каверну. При падении скорости каверна схлопывается и пуля тормозится.

— При выстреле под водой пуля движется более или менее прямолинейно пока ее окружают пороховые газы выполняющие роль каверны. При выходе из такой каверны пуля останавливается, практически, сразу.

Поэтому при выстреле под водой даже из такого мощного оружия как пулемет Калашникова и таким мощным боеприпасом как винтовочный патрон образца 1908 года пуля падает на дно на расстоянии 70 — 100 см.

При выходе из полости создаваемой пороховыми газами она, практически, сразу разворачивается, теряет скорость и может изменить траекторию.

Описанные явления и дают возможность человеку спастись от пули под водой.

Несколько по-другому при выстреле в воду ведет себя экспансивная пуля, или пуля с плоской головной частью.

Она либо разрушается, как и положено экспансивной пуле, либо, благодаря плоской головной части эффективно создает кавитационную каверну в которой может проникнуть в водной среде несколько дальше обычной пули.

Этот эффект известен давно. Для его достижения использовались снаряды с плоской головной частью применяемые для повреждения кораблей ниже ватерлинии при боевых действиях на море.

Рикошет. Опасность рикошета при выстреле в воду.

Исследованием ЦНЭАТ в г.Самара установлено, что при выстреле в воду и возникновении рикошета пуля проникает в толщу воды на глубину 10 — 20 см., а затем, выходит на поверхность, сохраняя значительный запас энергии. При этом направление полета ее непредсказуемо. А при выстреле в набегающую волну возможно и возвращение ее в сторону стрелка.

Поэтому стрельба в воду крайне опасна как для окружающих так и для самого стрелка. В наставлении ветеранов мировых войн прямо указывается, что выстрел в воду опасен, так как пули возвращаются. Но это обстоятельство, также, увеличивает возможность спасения от пули под водой.

При эксперименте «разрушителей легенд» на канале «Дискавери» некоторые пули не были найдены. Понятно, что в этих случаях имел место рикошет.

Спастись от пули под водой.

Изложенные факты позволяют сделать вывод, что спастись от пули под водой возможно.

В свою очередь этот вопрос задавали себе и «разрушители легенд», создавая 34 выпуск своей передачи в сезоне 3.

В результате их исследования было установлено, что спастись от пули под водой возможно уже на глубине около 1 метра и более. Это с учетом того, что выстрел перпендикулярно поверхности воды маловероятен. Обычно стреляют в воду под большим или меньшим углом.

Если возможна стрельба перпендикулярно поверхности воды нырять, желательно, глубже. При такой стрельбе у «разрушителей легенд» пистолетная пуля калибра 9 мм. доставала мишень на глубине 2,4 метра.

Кроме того спаснеию от пули под водой способствует преломление света в водной среде при котором предмет, поверхности, виден не там где он находится.

Легче спастись от пули под водой когда вода мутная.

Поможет и то то, что в некоторых случаях при выстреле в воду пули разрушаются. У «разрушителей легенд» это происходило с большинством высокоскоростных (имеющих скорость более 700 м/сек.) пуль.

На этот факт обратили внимание эксперты из ЦНЭАТ.

Они указывают, что в их исследованиях при выстреле в воду отечественные пули, имеющие скорость более 700 м/сек не разрушались.

Это обстоятельство вызывает некоторые сомнения и вопросы. Применение разрушающихся экспансивных пуль при боевых действиях международным законодательством запрещено.

И, даже, если принимать во внимание то, что «разрушители легенд» испытывали гражданское или охотничье оружие так и хочется проверить американские боевые патроны. Уж не жульничают ли американцы, по своему обыкновению?

Но, данном случае, разрушение пули при выстреле в воду увеличивает шансы человека на спасение от пули под водой.

Выводы.

В большинстве случаев спастись от пули под водой возможно.

Выстрел в воду теряет эффективность из-за:

1. Остановки пули плотной водной средой.

3. Или разрушения пули.

4. Преломления света в воде.

5. Мутности воды, исключающей визуальное наблюдение.

Выстрел в воду и движение пули под водой.

Источник

Оцените статью