Содержание кислорода котловой воде

Измерение растворенного кислорода в технологических водах котельных и теплосетей. Приборный или химический анализ

А.Г. Кутин, ведущий специалист, ООО «ВЗОР», г. Нижний Новгород

Надежность работы оборудования, трубопроводов котельной и тепловой сети зависит в большой степени от качества водоподготовки, которая, в свою очередь, немыслима без должного контроля на всех участках технологического процесса. Контроль содержания растворенного кислорода в теплоэнергетике является важнейшей задачей для предотвращения повреждаемости металла кислородной коррозией.

Содержание кислорода в технологических водах нормируется жестко и обычно лежит в пределах, не превышающих 50 мкг/дм 3 . В отечественной теплоэнергетике середины-конца прошлого века для контроля содержания растворенного кислорода широко применялись химические методы анализа, изложенные, например, в ОСТ 34-70-953.23-92, ГОСТ-26449.3-85. Наиболее часто применяемым являлся визуально-колориметрический метод с использованием метиленового голубого индикатора, причем персоналом химических лабораторий иногда применялись не только типовые шкалы с максимальным определением кислорода до 100 мкг/дм 3 , но и с более широкими диапазонами до 200 и 400 мкг/дм 3 . Немногим реже встречается использование колориметрического метода с использованием индигокармина. На многих объектах использовались шкалы до 100, 140, 170 мкг/дм 3 . Достаточно редко встречается применение колориметрического метода с использованием сафранина «Т» со шкалой до 30 мкг/дм 3 . В некоторых случаях лабораториями применялся йодометрический анализ с возможностью измерения высоких концентраций (от 200 мкг/дм 3 ) при контроле нарушений в работе оборудования, но применение данного анализа для контроля высоких концентраций кислорода не распространено, т.к. считается, что шкалы колориметрических методов достаточны не только для контроля нормативного содержания кислорода, но и для выявления превышения данных норм.

Читайте также:  Как снимают плату за воду

В последние два десятилетия в российской теплоэнергетике все более широко стали применяться анализаторы растворенного кислорода.

Опыт внедрения кислородомеров МАРК производства ООО «ВЗОР» более чем на 300 ТЭС и теплосетей России и ближнего зарубежья показал, что многие объекты работали с существенными нарушениями норм растворенного кислорода, и данные нарушения не всегда выявлялись колориметрическими методами, а йодометрический метод для определения высоких концентраций кислорода не применялся лабораториями, т.к. считалось, что нарушений нет либо они незначительны. Иногда, в случаях несоответствия показаний приборов и химического анализа, правильность показаний кислородомеров ставилась под сомнение как персоналом химических лабораторий, так и руководством. Необходимо отметить, что анализаторы растворенного кислорода МАРК всех поколений, включая самые ранние разработки, включены в госреестр СИ РФ. Также главным конструктором ООО «ВЗОР» Родионовым А.К. опубликована методика проверки такой важнейшей характеристики датчиков растворенного кислорода приборов МАРК как линейность [1]. Данная методика позволяет проверить погрешность прибора на всем диапазоне измерения (от 1-3 до 20000 мкг/дм 3 ) и свидетельствует о высокой линейности характеристики датчиков (отклонение от линейности не более 0,5% на всем диапазоне).

Случаи несоответствия данных, полученных поверенными анализаторами растворенного кислорода и визуально-колориметрическим методом с использованием метиленового голубого, был выявлен и опубликован, например, специалистами ГУП ТЭК-СПб [2]. Выяснилось, что при реально больших концентрациях растворенного кислорода метиленовый голубой реактив дает существенное занижение результатов (рис.1-2).

При концентрации свыше 200 мкг/дм 3 показания, полученные кислородомером, совпадают с методом Винклера, при этом анализ с использованием метиленового голубого не только не показывает высоких концентраций, но и главное, не показывает максимума шкалы 100 мкг/дм 3 , что не позволяет при использовании только лишь этого метода выявить серьезные нарушения в работе теплоэнергетического оборудования.

Для проверки достоверности анализа с применением метиленового голубого реактива авторами статьи была предложена методика насыщения деаэрированной воды кислородом воздуха, диффундирующего через стенки силиконового шланга. При постоянном потоке деаэрированной воды концентрация кислорода в ней оказывается пропорциональной длине шланга. На рис. 3 показаны результаты замеров приборным методом и методом с использованием метиленового голубого. Как видно из графиков, зависимость результатов измерений метиленовым голубым от длины шланга является весьма нелинейной. Результаты существенно занижены по сравнению с результатами приборного анализа.

Подобный метод позволяет оперативно и наглядно проводить «сверку» показаний кислородомеров с результатами химического анализа. Метод неоднократно использовался специалистами ООО «ВЗОР» совместно со специалистами теплоэнергетических предприятий для анализа качества проводимых кислородных измерений. На одной из ТЭС был проведен опыт сличения результатов замеров поверенным анализатором растворенного кислорода с результатами анализа двумя химическими методами, применявшимися на данной ТЭС. До этого между собой на станции два метода никогда не сравнивались. Результаты испытаний приведены на рис. 4.

Как видно из эксперимента, показания кислородомера пропорциональны длине шланга, показания химических анализов не только ниже, но, главное, не соответствуют друг другу, отличаясь в 2-3 раза. Сходимость есть только на нулевой точке.

В некоторых случаях при выявлении серьезных нарушений в работе энергетического оборудования с помощью кислородомера проводилась проверка реакции метода с использованием метиленового голубого на сырой воде, насыщенной кислородом (табл. 1).

Таблица 1. Пример искажения измерений при использовании метиленового голубого.

Очевидно, что в сырой недеаэрированной воде содержание растворенного кислорода составляет несколько тысяч микрограмм на литр и соответственно колориметрический метод должен давать окраску, соответствующую максимальному значению по шкале. Иногда это выполняется, однако выявлены десятки случаев, когда максимальной окраски не получалось, метод показывал некое промежуточное значение, что является ошибкой измерения в 50-200 (!) раз. Метод с индигокармином не давал максимальной окраски в сырой воде дважды за всю историю сравнений. При сравнении результатов приборного анализа с методом с использованием сафранина «Т» расхождений не было выявлено ни разу. В итоге можно отметить, что наиболее часто применяемый метод с использованием метиленового голубого может давать существенное занижение результатов при анализе растворенного кислорода и, как следствие, не удается выявить и устранить нарушения ведения водно-химического режима.

Надо отметить, что на достаточно большом количестве объектов при внедрении анализаторов растворенного кислорода их показания соответствовали результатам химического анализа. Как правило, на этих станциях концентрация растворенного кислорода не превышала установленных норм, а нарушения выявлялись и своевременно устранялись. Персонал таких объектов, в первую очередь, и отказывался от химического анализа в пользу приборного контроля. Причинами же серьезных искажений при измерении растворенного кислорода визуально-колориметрическими методами может быть как низкое качество химреактивов, так и ошибки персонала при проведении анализа. Для примера ниже показаны результаты измерений относительно высокой концентрации кислорода разными методами и разными операторами. Виден исключительно большой разброс полученных результатов (табл. 2).

Таблица 2. Результаты измерения кислорода различными методами и операторами.

ГРЭС, прямоточные котлы, блоки 300 МВт
метод питательная вода
МАРК-ЗОЗТ, МАРК-409, мкг/л 200-205
Индигокарминовый, мкг/л 90
Метод Винклера (лаборант), мкг/л 480
Метод Винклера (инженер), мкг/л 320

На данный момент подавляющее большинство химических лабораторий тепловых электростанций и тепловых сетей РФ перешли на приборный контроль растворенного кислорода. Тем не менее, есть объекты, где применение кислородомеров саботируется инженерным персоналом и лаборантами, либо находится под запретом руководства из-за высоких показаний и выявления неудовлетворительного кислородного режима. В журнале фиксируются некие нормативные цифры, полученные с помощью визуально-колориметрического анализа, притом что на объектах и теплосетях выявляются высокие уровни язвенной кислородной коррозии.

Анализ опыта внедрений кислородомеров МАРК на многих ТЭС показал, что примерно в 30% случаях, даже при использовании исправного поверенного анализатора растворенного кислорода, результат измерения оказывается некорректным. Самой распространенной ошибкой персонала было применение силиконовых присоединительных шлангов для подачи пробы к проточным кюветам. Диффузия кислорода из атмосферного воздуха приводила к сильным завышениям результатов. Типовые шланги из резины либо ПВХ не допускают диффузии кислорода из атмосферы в пробу. Тем не менее, они имеют свойство накапливать кислород в стенках при нахождении на воздухе, и при малых потоках пробы результаты могут быть завышены на несколько микрограмм. Рекомендуемая скорость потока через кювету датчика должна быть в пределах 400-800 мл/мин, однако на многих пробоотборных точках такой поток обеспечить невозможно в силу ряда причин, в первую очередь, проблем с охлаждением. Предприятием ВЗОР разработан принципиально новый кислородомер, адаптированный к реальным условиям эксплуатации на отечественных ТЭС и котельных.

Рис. 5. Измерительный узел кислородомера.

Конструкция их измерительного узла (см. рис. 5) позволяет отказаться от применения классических гибких шлангов для подачи пробы. Датчик с помощью специального устройства крепится на любую пробоотборную линию диаметром от 5 до 20 мм. Отказ от гибких полимерных шлангов позволяет производить измерения на любых, даже сверхмалых, скоростях потока (от 25 мл/мин) и производить измерения без искажений остаточным кислородом с внутренних стенок подводящих шлангов. Типовое время измерения 2-3 минуты. Также расширен температурный диапазон прибора, можно производить измерения на пробах с температурой до 70 О С.

Литература

1. Родионов А.К. Методика измерения метрологических характеристик датчика растворенного кислорода // Теплоэнергетика. 2009. № 7. С. 2-6.

Источник

Приложение №3. Требования к качеству питательной и котловой воды

1. Показатели качества питательной воды для котлов с естественной и многократной принудительной циркуляцией паропроизводительностью 0,7 т/ч и более (кроме водотрубных котлов с естественной циркуляцией и рабочим давлением пара 14 МПа) не должны превышать указанных значений:

а) для паровых газотрубных котлов:

Показатель Значение
Для котлов, работающих
на жидком топливе на других видах топлива
Прозрачность по шрифту, см, не менее 40 20
Общая жесткость, * 30 100
Содержание растворенного кислорода (для котлов паропроизводительностью 2 т/ч и более), мкг/кг 50* 100

* Для котлов, не имеющих экономайзеров, и котлов с чугунными экономайзерами содержание растворенного кислорода допускается от 100 мкг/кг;

б) для водотрубных котлов с естественной циркуляцией (в том числе котлов-бойлеров) и рабочим давлением пара до 4 МПа:

Показатель Значение
Рабочее давление, МПа
0,9 1,4 2,4 4
Прозрачность по шрифту, см, не менее 30 40 40 40
Общая жесткость, мкгэкв/кг 30* _____ 40 15* _____ 20 10* ____ 15 5* ____ 10
Содержание соединений железа (в пересчете на Fe), мкг/кг Не нормируется 300* ______ Не нормируется 100* _____ 200 50* _____ 100
Содержание соединений меди (в пересчете на Cu), мкг/кг Не нормируется 10* ________ Не нормируется
Содержание растворенного кислорода (для котлов паропроизводительностью 2 т/ч и более)**, мкг/кг 50* _____ 100 30* _____ 50 20* ____ 50 20* _____ 30
Значение рН при 25°C*** 8,5 — 10,5
Содержание нефтепродуктов, мг/кг 5 3 3 0,5

* В числителе указаны значения для котлов, работающих на жидком топливе, в знаменателе — на других видах топлива.

** Для котлов, не имеющих экономайзеров, и котлов с чугунными экономайзерами содержание растворенного кислорода допускается от 100 мкг/кг при сжигании любого вида топлива.

*** В отдельных обоснованных случаях может быть допущено снижение значения рН до 7,0.

в) для водотрубных котлов с естественной циркуляцией и рабочим давлением пара 10 МПа:

Показатель Значение
Для котлов, работающих
на жидком топливе на других видах топлива
Общая жесткость, * 1 3
Содержание соединений железа (в пересчете на Fe), мкг/кг 20 30
Содержание соединений меди (в пересчете на Cu), мкг/кг 5 5
Содержание растворенного кислорода, мкг/кг 10 10
Значение рН при 25°С* * *
Содержание нефтепродуктов, мг/кг 0,3 0,3

* При восполнении потерь пара и конденсата химически очищенной водой допускается повышение начения рН до 10,5:

г) для энерготехнологических котлов и котлов-утилизаторов с рабочим давлением пара до 5 МПа:

Показатель Значение
Рабочее давление, МПа
0,9 1,4 4 и 5
Температура греющего газа (расчетная), °С
до 1200 включительно до 1200 включительно свыше 1200 до 1200 включительно свыше 1200
Прозрачность по шрифту, см, не менее 30*(1) ____ 20 40*(1) ____ 30 40
Общая жесткость, * 40*(1) _____ 70 20*(2) _____ 50 15 10 5
Содержание соединений железа (в пересчете на Fe), мкг/кг Не нормируется 150 100 50*(3)
Содержание растворенного кислорода:
а) для котлов с чугунным экономайзером или без экономайзера, мкг/кг 150 100 50 50 30
б) для котлов со стальным экономайзером, мкг/кг 50 30 30 30 20
Значение рН при 25°С Не менее 8,5*(4)
Содержание нефтепродуктов, мг/кг 5 3 2 1 0,3

*(1) В числителе указано значение для водотрубных котлов, в знаменателе — для газотрубных котлов.

*(2) Для водотрубных котлов с рабочим давлением пара 1,8 МПа жесткость не должна быть более 15 *.

*(3) Допускается увеличение содержания соединений железа до 100 мкг/кг при условии применения методов реагентной обработки воды, уменьшающих интенсивность накипеобразования за счет перевода соединений железа в раствор, при этом должны соблюдаться нормативы по допускаемому количеству отложений на внутренней поверхности парогенерирующих труб.

*(4) Верхнее значение рН устанавливается не более 9,5 в зависимости от материалов, применяемых в оборудовании пароконденсатного тракта.

Примечание: Для газотрубных котло-утилизаторов вертикального типа с рабочим давлением пара свыше 0,9 МПа, а также для содорегенерационных котлов показатели качества питательной воды нормируются по значениям последней колонки таблицы. Кроме того, для содорегенерационных котлов нормируется солесодержание питательной воды, которое не должно быть более 50 мг/кг;

д) для энерготехнологических котлов и котлов-утилизаторов с рабочим давлением пара 11,0 МПа:

Показатель Значение
Общая жесткость, * 3
Содержание соединений железа (в пересчете на Fe), мкг/кг 10
Содержание растворенного кислорода, мкг/кг 30
Значение рН при 25°С **
Условное солесодержание (в пересчете на NaCl), мкг/кг** 300
Удельная электрическая проводимость при 25°С, мкОм/см** 2
Содержание нефтепродуктов, мг/кг 0,3

* Верхнее значение рН устанавливается не более 9,5 в зависимости от материалов, применяемых в оборудовании пароконденсатного тракта.

** Условное солесодержание должно определяться кондуктометрическим солемером с предварительной дегазацией и концентрированием пробы, а удельная электрическая проводимость — кондуктометром с предварительным водород-катионированием пробы; контролируется один из этих показателей;

е) для высоконапорных котлов парогазовых установок:

Показатель Значение
Рабочее давление, МПа
4 10 14
Общая жесткость, мкг-экв/кг 5 3 7
Содержание соединений железа (в пересчете на Fe), мкг/кг 50* 30* 20*
Содержание растворенного кислорода, мкг/кг 20 10 10
Значение рН при 25°С * * *
Условное солесодержание (в пересчете на NaCl), *** Не нормируется 300 200
Удельная электрическая проводимость при 25°С, * Не нормируется 2 1,5
Содержание нефтепродуктов, мг/кг 1,0 0,3 0,3

* Допускается превышение норм по содержанию железа на 50% при работе парогенератора на природном газе.

** Условное солесодержание должно определяться кондуктометрическим солемером с предварительной дегазацией и концентрированием пробы, а удельная электрическая проводимость — кондуктометром с предварительным водород-катионированием пробы; контролируется один из этих показателей.

2. Показатели качества питательной воды для водотрубных котлов с естественной циркуляцией и рабочим давлением пара 14 МПа и для энергетических прямоточных котлов не должны превышать указанных значений:

а) для водотрубных котлов с естественной циркуляцией и рабочим давлением пара 14 МПа:

Показатель Значение
Общая жесткость, * 1
Содержание соединений железа, * 20
Содержание соединений меди в воде перед деаэратором, * 5
Содержание растворенного кислорода в воде после деаэратора, * 10
Содержание нефтепродуктов, * 0,3
Значение рН *
Содержание кремниевой кислоты, *:
для конденсационных электростанций и отопительных ТЭЦ 30
для ТЭЦ с производственным отбором пара 60

При восполнении потерь пара и конденсата химически очищенной водой допускается повышение значения рН до 10,5.

Содержание соединений натрия для котлов с давлением 14 МПа должно быть не более 50 *. Допускается корректировка норм содержания натрия в питательной воде на ТЭЦ с производственным отбором пара в случае, если на ней не установлены газоплотные или другие котлы с повышенными локальными тепловыми нагрузками экранов и регулирование перегрева пара осуществляется впрыском собственного конденсата.

Удельная электрическая проводимость Н-катионированной пробы для котлов с давлением 14 МПа должна быть не более 1,5 мкОм/см. Допускается соответствующая корректировка нормы удельной электрической проводимости в случаях корректировки нормы содержания натрия в питательной воде.

Содержание гидразина (при обработке воды гидразином) должно составлять от 20 до 60 *; в период пуска и остановки котла допускается содержание гидразина до 3000 * (со сбросом пара в атмосферу).

Содержание аммиака и его соединений должно быть не более 1000 *; в отдельных случаях, согласованных с региональным диспетчерским подразделением энергетической системы (в случае для оборудования, находящегося в управлении (ведении) диспетчера), допускается увеличение содержания аммиака до значений, обеспечивающих поддержание необходимого значения рН пара, но не приводящих к превышению норм содержания в питательной воде соединений меди.

Содержание свободного сульфита (при сульфитировании) должно быть не более 2 *.

Суммарное содержание нитритов и нитратов для котлов с давлением 14 МПа должно быть не более 20 *;

б) для энергетических прямоточных котлов:

Показатель Значение
Общая жесткость, * не более 1
Содержание натрия, *, не более 5
Кремниевая кислота, *, не более 15
Соединения железа, *, не более 10
Растворенный кислород при кислородных режимах, * 100 — 400
Удельная электрическая проводимость, мкОм/см, не более 0,3
Соединения меди в воде перед деаэратором, *, не более 51
Растворенный кислород в воде после деаэратора, * 10
Значение рН при режиме:
гидразинно-аммиачном *
гидразинном *
кислородно-аммиачном *
Гидразин, *, при режиме:
гидразинно-аммиачном 20 — 60
гидразинном 80 — 100
пуска и останова До 3000
Содержание нефтепродуктов (до конденсатоочистки), *, не более 0,1

* При установке в конденсатно-питательном тракте всех теплообменников с трубками из нержавеющей стали или других коррозионно-стойких материалов — не более 2 *.

На тех электростанциях с прямоточными котлами с давлением пара 14 МПа, где проектом не была предусмотрена очистка всего конденсата, выходящего из конденсатосборника турбины, допускается содержание соединений натрия в питательной воде и паре при работе котлов не более 10 *, общая жесткость питательной воды должна быть не более 0,5 *, а содержание в ней соединений железа — не более 20 *.

Для прямоточных котлов с давлением 10 МПа и менее нормы качества питательной воды, пара и конденсата турбин при работе котлов должны быть установлены энергосистемами на основе имеющегося опыта эксплуатации.

3. Показатели качества подпиточной и сетевой воды для водогрейных котлов (кроме водогрейных котлов, установленных на тепловых электростанциях, тепловых станциях) не должны превышать указанных значений:

Показатель Значение
Система теплоснабжения
открытая закрытая
Температура сетевой воды, °С
115 150 200 115 150 200
Прозрачность по шрифту, см, не более 40 40 40 30 30 30
Карбонатная жесткость, *:
Значение рН не более 8,5 800* ______ 700 750* ______ 600 375* ______ 300 800* ______ 700 750* ______ 600 375* ______ 300
Значение рН более 8,5 Не допускается По расчету
Содержание растворенного кислорода, мкг/кг 50 30 20 50 30 20
Содержание соединений железа (в пересчете на Fe), мкг/кг 300 300* ______ 250 250* ______ 200 600* ______ 500 500* ______ 400 375* ______ 300
Значение рН при 25°С От 7,0 до 8,5 От 7,0 до 11,0 **
Содержание нефтепродуктов, мг/кг 1,0

* В числителе указано значение для котлов на твердом топливе, в знаменателе — на жидком и газообразном топливе.

** Для теплосетей, в которых водогрейные котлы работают параллельно с бойлерами, имеющими латунные трубки, верхнее значение рН сетевой воды не должно превышать 9.5.

4. Показатели качества сетевой воды для водогрейных котлов, установленных на тепловых электростанциях и тепловых станциях, не должны превышать следующих значений:

Показатель Значение
Содержание свободной углекислоты 0
Значение рН для систем теплоснабжения:
открытых 8,3 — 9
закрытых 8,3 — 9,5
Содержание соединений железа для систем теплоснабжения *,
открытых 0,3 — 0,5*
закрытых 0,5
Содержание растворенного кислорода *, 20
Количество взвешенных веществ *, 5
Содержание нефтепродуктов для систем теплоснабжения *,
открытых 0,1
закрытых 1

* Верхний предел допускается по согласованию с органами Роспотребнадзора.

В начале отопительного сезона и в послеремонтный период допускается превышение норм в течение четырех недель для закрытых систем теплоснабжения и двух недель для открытых систем по содержанию соединений железа до 1 *, растворенного кислорода до 30 и взвешенных веществ до 15 *.

5. Показатели качества подпиточной воды для водогрейных котлов, установленных на тепловых электростанциях и тепловых станциях, не должны превышать следующих значений:

а) закрытые тепловые сети:

Показатель Значение
Содержание свободной углекислоты 0
Значение рН для систем теплоснабжения:
открытых 8.3 — 9*
закрытых 8,3 — 9,5*
Содержание растворенного кислорода *, не более 50
Количество взвешенных веществ *, не более 5
Содержание нефтепродуктов *, не более 1

* Верхний предел значения рН допускается только при глубоком умягчении воды, нижний — с разрешения энергосистемы может корректироваться в зависимости от интенсивности коррозионных юлении в оборудовании и трубопроводах систем теплоснабжения;

б) качество подпиточной воды открытых систем теплоснабжения (с непосредственным водоразбором) должно удовлетворять также действующим нормам для питьевой воды. Подпиточная вода для открытых систем теплоснабжения должна быть подвергнута удалению из нее органических примесей, если цветность пробы воды при ее кипячении в течение 20 мин увеличивается сверх нормы, указанной в действующих нормативных документах для питьевой воды.

При силикатной обработке воды для подпитки тепловых сетей с непосредственным разбором горячей воды содержание силиката в подпиточной воде должно быть не более 50 * в пересчете на *.

При силикатной обработке подпиточной воды предельная концентрация кальция должна определяться с учетом суммарной концентрации не только сульфатов (для предотвращения выпадения *), но и кремниевой кислоты (для предотвращения выпадения *) для заданной температуры нагрева сетевой воды с учетом ее превышения в пристенном слое труб котла на 40°С.

Непосредственная присадка гидразина и других токсичных веществ в подпиточную воду тепловых сетей и сетевую воду не допускается.

6. Нормы качества котловой воды, необходимый режим ее коррекционной обработки, режимы непрерывной и периодической продувок принимаются на основании инструкции организации — изготовителя котла, типовых инструкций по ведению водно-химического режима или на основании результатов теплохимических испытаний.

При этом для паровых котлов с давлением до 4 МПа включительно, имеющих заклепочные соединения, относительная щелочность котловой воды не должна превышать 20%; для котлов со сварными барабанами и креплением труб методом вальцовки (или вальцовкой с уплотнительной подваркой) относительная щелочность котловой воды допускается до 50%, для котлов со сварными барабанами и приварными трубами относительная щелочность котловой воды не нормируется.

Для паровых котлов с давлением свыше 4 до 10 МПа включительно относительная щелочность котловой воды не должна превышать 50%, для котлов с давлением свыше 10 до 14 МПа включительно не должна превышать 30%.

7. Показатели качества питательной воды паровых электрических котлов не должны превышать следующих значений:

Показатель Значение
Прозрачность по шрифту, см, не менее 20
Удельное сопротивление, * В пределах, указанных в паспорте котла
Общая жесткость, *, не более 0,1*
Содержание растворенного кислорода, мг/кг, не более 0,1
Содержание нефтепродуктов, мг/кг, не более 5

* В случае обоснования проектной организацией допускается повышение или снижение величины общей жесткости при условии соблюдения периода между чистками котла от накипи, а также нормативных требований к качеству пара или получаемого из него конденсата.

8. Показатели качества подпиточной и сетевой воды водогрейных электрических котлов не должны превышать следующих значений:

Показатель Значение
Прозрачность по шрифту, для систем теплоснабжения см, не менее:
открытых 40
закрытых 30
Удельное сопротивление, * В пределах, указанных в паспорте котла
Общая жесткость, *, не более 3
Содержание растворенного кислорода, мг/кг, не более:
при температуре сетевой воды 115°С 0.05
при температуре сетевой воды 150°С 0,03
Содержание свободной углекислоты, мг/кг Не допускается
Содержание нефтепродуктов, для систем теплоснабжения мг/кг, не более:
открытых 0,3
закрытых 1

Данные нормы качества подпиточной и сетевой воды водогрейных электрических котлов распространяются на котлы, работающие по отопительно-вентиляционному или какому-либо другому гибкому графику отпуска тепла. В случае установки водогрейных электрических котлов на производствах с жестким графиком отпуска тепла, особенно при постоянной работе котлов на предельных параметрах, качество подпиточной и сетевой воды принимается проектной организацией.

Источник

Оцените статью