- Способы охлаждения
- Содержание
- Литература
- Как работают кондиционеры на воде. Испарительное охлаждение воздуха
- История развития
- Варианты применения испарительного охлаждения
- Двухстадийное испарительное охлаждение, или непрямое/прямое.
- Назначение
- Преимущества
- Недостатки
- Принцип работы (вариант 1)
- Обозначения:
- Принцип работы (вариант 2) — установка на воздухозаборе
- Установки испарительного охлаждения
Способы охлаждения
Содержание
В любом природном процессе осуществляется непрерывный переход теплоты от тел с высокой температурой к телам с низкой температурой, т. е. происходит естественное охлаждение, при котором конечная температура охлаждаемого тела зависит от температуры охлаждающего тела. Количество теплоты, которое может поглотить охлаждающее тело, определяет его охлаждающий эффект , или количество произведенного холода. Так, количество производимого холода 1 кг водного льда равно теплоте его плавления при О °С, т. е. 335 кДж/кг. Охлаждающими телами в естественных условиях являются воздух, вода и лед.
При естественном охлаждении температуру ниже температуры окружающей среды получить нельзя. Чтобы температура тела стала ниже температуры естественных источников холода, применяют искусственные способы охлаждения, основой которых являются следующие физические процессы: изменение агрегатного состояния (фазовые превращения), сопровождающиеся поглощением теплоты (плавление, парообразование, сублимация, растворение соли); расширение сжатого газа с получением внешней работы; дросселирование (эффект Джоуля- Томпсона); вихревой эффект (эффект Ранка — Хильша); термоэлектрическое охлаждение (эффект Пельтье); десорбция газов.
Охлаждение при изменении агрегатного состояния тел
Изменение агрегатного состояния тела (плавление, кипение, сублимация) сопровождается поглощением значительного количества теплоты, расходуемой на внутреннюю работу по преодолению сил сцепления между молекулами. На практике для получения охлаждающего эффекта используют вещества (водный лед, аммиак, хладагенты R12, R22, R502, углекислоту и т. д.), у которых процессы плавления, кипения и сублимации протекают при низкой температуре при нормальном атмосферном давлении.
Фазовые превращения при изменении агрегатного состояния тел (плавление, кипение, сублимация) происходят при постоянных температурах и давлении, зависящих от физических свойств тел и условий перехода из одного состояния в другое.
Плавление — переход тела из твердого состояния в жидкое при подводе к нему необходимого количества теплоты. Плавление водного льда широко используют для охлаждения тела температурой выше О °C. Смешивание раздробленного льда или снега с солью снижает температуру таяния смеси.
Наибольшее применение в холодильной технике получили смеси хлористого натрия (NaCl) и хлористого кальция (СаС12) со льдом. В зависимости от процентного содержания солей в смесях их температура плавления может быть снижена соответственно до — 21,2 и — 55 °С.
Температура плавления определяется давлением и в период перехода тела из твердого состояния в жидкое остается постоянной. Количество теплоты qп, кДж, поглощенное 1 кг твердого тела при переходе его в жидкое состояние, называется теплотой плавления. e Теплота плавления льдосоляной смеси при снижении температуры плавления уменьшается. Так, теплота плавления чистого водного льда 335 кДж/кг, а смеси 28 %-й поваренной соли и льда 222 кДж/кг.
Кипение — процесс интенсивного образования пара во всей массе жидкости при ее нагревании. В отличие от кипения образование пара при испарении происходит только с поверхности жидкости. Количество теплоты, которое необходимо подвести к 1 кг жидкости, доведенной до температуры кипения, чтобы при постоянном давлении превратить ее в сухой насыщенный пар, называется удельной теплотой парообразования r, кДж/кг.
Процесс кипения происходит при определенной для данного давления температуре жидкости, называемой температурой кипения и равной температуре насыщения. Температура кипения любой жидкости остается неизменной в течение всего времени кипения.
При увеличении давления температура кипения повышается, а теплота парообразования уменьшается. Состояние вещества, в котором температуры перехода изо льда в жидкость и из жидкости в пар становятся равными, называется критическим. Теплота парообразования при критической температуре равна нулю. При температуре выше критической переход пара в жидкость невозможен.
При уменьшении давления температура кипения снижается. Например, вода при нормальном атмосферном давлении кипит при 100 °C. Если же в емкости с водой снизить давление до 0,001 МПа, то вода закипит при 4 °C. Хладагент R22 при давлении 0,1 МПа кипит при температуре — 40,8 °С, с уменьшением давления до 0,06 МПа температура кипения снизится до — 50 °C. Если емкость с хладагентом R22 поместить в помещение и соединить с атмосферой, то жидкость в емкости будет кипеть при температуре — 40,8 °С. Так как температура в помещении выше температуры кипения жидкости, то теплота преобразования будет отводиться от воздуха помещения, охлаждая его. Образовавшиеся при кипении пары будут выходить в атмосферу.
Охлаждающий эффект может быть получен за счет интенсивного испарения воды, теплота парообразования которой при 0°С равна 2500 кДж/кг. Испарительное охлаждение водой применяют при относительно высокой температуре кипения хладагента. Температура кипения и плавления хладагента изменяется соответственно с изменением давления.
Сублимация (возгонка) — процесс перехода тела из твердого состояния непосредственно в парообразное. Количество теплоты, поглощаемое 1 кг твердого тела при постоянной температуре перехода его в парообразное состояние, называется удельной теплотой сублимации q c, кДж/кг. Водный лед в атмосферных условиях сублимирует при температуре ниже 0 °C.
Углекислота в тройной точке имеет температуру — 56,6 °С и давление 0,52 МПа. Температура сублимации твердой углекислоты при атмосферном давлении -78,9 °C. Теплота сублимации q c равна сумме теплоты плавления q п и парообразования r , вследствие чего процесс дает больший холодильный эффект.
Для получения низких температур используют жидкости с низкой температурой кипения при нормальном атмосферном давлении, это -сжиженные воздух (температура кипения — 192 °C), кислород (- 183 °С) и азот(- 196 °C).
Способы охлаждения, основанные на использовании фазовых превращений веществ, возможны только при неограниченном запасе охлаждающих тел. Непрерывное получение холода при использовании одного и того же количества охлаждающего вещества возможно, если после получения холодильного эффекта оно возвращается в начальное состояние. Это осуществляется с помощью холодильных машин.
Охлаждение при расширении газов
Процесс адиабатного расширения сжатого газа сопровождается снижением температуры. Связь между давлением и температурой для идеального газа в адиабатном процессе выражается соотношением T2/T1=(p2/p1) (k-1)/k , где к — показатель адиабаты.
В адиабатном процессе расширения теплообмен с окружающей средой отсутствует, поэтому вся внутренняя энергия полностью преобразуется в механическую работу.
При расширении реального газа затрачивается дополнительная работа на преодоление внутренних сил притяжения его молекул и выполнение внешней работы.
Если воздух, сжатый до 9,5 МПа при t1 = 20 °С, адиабатно расширяется до 0,1 МПа, то при k = 1,4 его конечная температура
Или t2 = 79,6 – (-273) = — 193,4 °C.
Охлаждение с помощью дросселирования
Дросселированием называется снижение давления жидкости или газа при проходе через любое суженное отверстие (диафрагму, клапан). При быстром снижении давления внешняя работа не совершается и теплообмена с внешней средой практически не происходит. Энтальпия в этом процессе не изменяется, а энтропия возрастает из-за расхода внутренней энергии потока на преодоление трения, что указывает на необратимость процесса.
За суженным отверстием в зависимости от свойств и состояния реального газа внутренняя энергия может быть больше или меньше либо равной внутренней энергии до суженного отверстия. В зависимости от характера изменения внутренней энергии конечная температура реального газа может быть выше, равна или ниже начальной.
Изменение температуры вещества при дросселировании называется эффектом Джоуля — Томпсона , его применяют в технике глубокого охлаждения реальных газов.
Дросселирование жидкости сопровождается значительным снижением температуры. Это вызвано тем, что при дросселировании жидкости (особенно насыщенной) происходит парообразование в результате превращения работы сил трения в теплоту и передачи ее жидкости. При этом увеличивается объем и совершается большая работа по преодолению сил взаимного притяжения молекул. Если теплообмен с окружающей средой отсутствует, работа по преодолению сил притяжения будет сопровождаться уменьшением внутренней энергии, а следовательно, и температуры парожидкостной смеси. Процесс дросселирования жидкости широко используется для получения умеренно низких температур.
Вихревой эффект охлаждения
Охлаждение воздуха этим способом (эффект Ранка-Хильша) осуществляется с помощью вихревой трубы (рис. 1.1). Поток воздуха, предварительно сжатого, при температуре окружающей среды поступает в сопло 3 трубы 2 где, завихрясь, разделяется на два потока -холодный и горячий. Через диафрагму 4 воздух выходит охлажденный, а через дроссель 1 по периферии трубы — горячий.
Воздушный поток, вышедший из сопла по касательной к внутренней поверхности трубы, образует свободный вихрь, угловая скорость которого велика около оси и уменьшается по мере удаления от нее. При движении к дроссельному клапану 1 угловая скорость между слоями потока выравнивается вследствие трения между ними (скорость внутренних слоев снижается, внешний — возрастает), при этом кинетическая энергия внутренних слоев передается периферийным слоям. В результате наружные слои воздуха оказываются более нагретыми, внутренние — холодными.
В вихревой камере температурное расслоение воздуха происходит значительно быстрее, чем установка термического равновесия. При давлении воздуха 0,3- 0,5 МПа образуется холодный поток с температурой (- 10)-(- 50) °С и горячий с температурой 100-130 °С.
Получение охлаждающего эффекта с помощью вихревой трубы связано с большим расходом энергии. Вихревую трубу целесообразно применять в лабораторных и производственных условиях для периодического получения небольшого количества холода и теплоты.
Термоэлектрическое охлаждение (эффект Пельтье) заключается в том, что при прохождении электрического тока через цепь, составленную из разнородных полупроводников, в местах контактов (спаев) выделяется или поглощается теплота.
На рис. 1.2 изображен термоэлемент, состоящий из двух различных полупроводниковых элементов с электронной (-) и дырочной (+) проводимостью. Материалом полупроводников служат соединения висмута, сурьмы, селена с добавлением присадок. Широко распространены сплавы висмута, селена, теллура (с электронной проводимостью) и висмута, теллура, свинца (с дырочной проводимостью).
Термоэлементы объединяют последовательно в батареи с помощью медных пластин 1, которые образуют спаи. К электронному полупроводнику 2 подключен плюс источника питания, к дырочному 3 — минус. При прохождении по термоэлементу постоянного тока температура, верхнего спая понизится до tx и холодный спай будет поглощать теплоту Q0 от охлаждаемой среды. На нижнем спае температура повысится до tг, при этом горячий спай будет отдавать теплоту QK окружающей среде. Перепад температур между горячими и холодными спаями достигает 60 °C.
Термоэлектрическое охлаждение применяют в холодильных шкафах, кондиционерах и т. д. Холодопроизводительность выпускаемых батарей термоэлементов не превышает 50-100 Вт.
Охлаждающий эффект методом десорбции получают следующим образом. Сначала происходит адсорбция гелия активированным углем: процесс сопровождается выделением теплоты. При адсорбции в емкости поддерживается возможно низкая температура, т. е. емкость охлаждается. После насыщения угля гелием емкость изолируется. Затем гелий откачивают из емкости. При десорбции гелия из угля температура в емкости быстро снижается. Так, в одном из опытов 15 г активированного угля адсорбировали 8 л газообразного гелия при — 260 °С и давлении 0,13 МПа. При десорбции гелия из угля была получена температура ниже — 269 °С. Охлаждение газов методом десорбции применяют в основном в лабораторной практике для получения температуры, близкой к абсолютному нулю.
В рыбной промышленности из рассмотренных выше способов охлаждения применяют охлаждение при изменении агрегатного состояния тел (плавление, кипение) и охлаждение с помощью дросселирования.
Литература
Судовые холодильные машины и установки (Петров Ю.С.) 1991 г.
Источник
Как работают кондиционеры на воде. Испарительное охлаждение воздуха
Охлаждение и увлажнение воздуха посредством испарительного охлаждения — это абсолютно естественный процесс, в котором вода используется как охлаждающая среда, а тепло эффективно рассеивается в атмосфере. Используются простые закономерности — при испарении жидкости происходит поглащение тепла или выделение холода. Эффективность испарения — увеличивается при увеличении скорости воздуха, что обеспечивает принудительная циркуляция вентилятора.
Температура сухого воздуха может быть существенно снижена с помощью фазового перехода жидкой воды в пар, и этот процесс требует значительно меньше энергии, чем компрессионное охлаждение. В очень сухом климате испарительное охлаждение имеет также то преимущество, что при кондиционировании воздуха увеличивает его влажность, и это создаёт больше комфорта для людей, находящихся в помещении. Однако, в отличие от парокомпрессионного охлаждения, оно требует постоянного источника воды, и в процессе эксплуатации постоянно её потребляет.
История развития
На протяжении веков цивилизации находили оригинальные методы борьбы со зноем на своих территориях. Ранняя форма охлаждающей системы, «ловец ветра», была изобретена много тысяч лет назад в Персии (Иран). Это была система ветряных валов на крыше, которые улавливали ветер, пропускали его через воду, и задували охлаждённый воздух во внутренние помещения. Примечательно, что многие из этих зданий также имели дворы с большими запасами воды, поэтому, если не было ветра, то в результате естественного процесса испарения воды горячий воздух, поднимаясь вверх, испарял воду во дворе, после чего уже охлажденный воздух проходил через здание. В наши дни Иран заменил ловцов ветра на испарительные охладители и широко их использует, а рынок за счет сухого климата — достигает оборота за год в 150.000 испарителей.
В США испарительный охладитель в двадцатом веке был объектом многочисленных патентов. Многие из которых, начиная с 1906г., предлагали использовать древесную стружку, как прокладку переносящую большое количество воды при контакте с движущимся воздухом, и поддерживающую интенсивное испарение. Стандартная конструкция, как показано в патенте 1945г., включает водяной резервуар (обычно оснащённый поплавковым клапаном для регулировки уровня), насос для циркуляции воды через прокладки из древесных стружек, и вентилятор для подачи воздуха через прокладки в жилые помещения. Эта конструкция и материалы остаются основными, в технологии испарительных охладителей, на юго-западе США. В этом регионе они дополнительно используются для увеличения влажности.
Испарительное охлаждение было распространено в авиационных двигателях 1930-х годов, например, в двигателе для дирижабля Beardmore Tornado. Эта система была использована для уменьшения или полного исключения радиатора, который в ином случае мог бы создать существенное аэродинамическое сопротивление. В этих системах вода в двигателе поддерживалась под давлением с помощью насосов, позволявших ей нагреваться до температуры более 100°C, поскольку фактическая точка кипения зависит от давления. Перегретая вода распылялась через сопло на открытую трубу, где мгновенно испарялась, принимая её тепло. Эти трубы могли быть расположены под поверхностью самолёта для создания нулевого сопротивления.
Внешние приборы испарительного охлаждения устанавливались на некоторые автомобили для охлаждения салона. Зачастую они продавались как дополнительные аксессуары. Использование приборов испарительного охлаждения в автомобилях продолжалось до тех пор, пока не приобрело широкое распространение парокомпрессионное кондиционирование воздуха.
Принцип испарительного охлаждения отличается от того, на котором работают аппараты парокомпрессионного охлаждения, хотя они также требуют испарения (испарение является частью системы). В парокомпрессионном цикле, после испарения хладагента внутри испарительного змеевика, охлаждающий газ сжимается и охлаждается, под давлением конденсируясь в жидкое состояние. В отличие от этого цикла, в испарительном охладителе вода испаряется только один раз. Испарённая вода в охладительном приборе выводится в пространство с охлажденным воздухом. В градирне испарившаяся вода уносится потоком воздуха.
Варианты применения испарительного охлаждения
Различают испарительное охлаждение воздуха прямое, косое, и двухступенчатое (прямое и косвенное). Прямое испарительное охлаждение воздуха основано на изоэнтальпийном процессе и используется в кондиционерах в холодное время года; в теплое время оно возможно лишь при отсутствии или незначительных влаговыделениях в помещении и низком влагосодержании наружного воздуха. Несколько расширяет границы его применения байпасирование камеры орошения.
Прямое испарительное охлаждение воздуха целесообразно в условиях сухого и жаркого климата в приточной системе вентиляции.
Косвенное испарительное охлаждение воздуха осуществляется в поверхностных воздухоохладителях. Для охлаждения воды, циркулирующей в поверхностном теплообменнике, используют вспомогательный контактный аппарат (градирню). Для косвенного испарительного охлаждения воздуха можно использовать аппараты совмещенного типа, в которых теплообменник выполняет одновременно обе функции — нагрев и охлаждение. Такие аппараты аналогичны воздушным рекуперативным теплообменникам.
По одной группе каналов проходит охлаждаемый воздух, внутренняя поверхность второй группы орошается водой, стекающей в поддон, а затем вновь разбрызгиваемой. При контакте с проходящим во второй группе каналов выбросным воздухом происходит испарительное охлаждение воды, в результате чего воздух в первой группе каналов охлаждается. Косвенное испарительное охлаждение воздуха позволяет снизить производительность системы кондиционирования воэдуха по сравнению с ее производительностью при прямом испарительном охлаждении воздуха и расширяет возможности использования этого принципа, т.к. влагосодержание приточного воздуха во втором случае меньше.
При двухступенчатом испарительном охлаждении воздуха используют последовательное косвенное и прямое испарительное охлаждение воздуха в кондиционере. При этом установку для косвенного испарительного охлаждения воздуха дополняют оросительной форсуночной камерой, работающей в режиме прямого испарительного охлаждения. Типовые оросительные форсуночные камеры используют в системах испарительного охлаждения воздуха как градирни. Помимо одноступенчатого косвенного испарительного охлаждение воздуха возможно многоступенчатое, в котором осуществляется более глубокое охлаждение воздуха, — это так называемая бескомпрессорная система кондиционирования воэдуха.
Прямое испарительное охлаждение (открытый цикл) используется для снижения температуры воздуха с помощью удельной теплоты испарения, изменяя жидкое состояние воды на газообразное. В этом процессе энергия в воздухе не меняется. Сухой, тёплый воздух заменяется на прохладный и влажный. Тепло внешнего воздуха используется для испарения воды.
Непрямое испарительное охлаждение (закрытый цикл) процесс похожий на прямое испарительное охлаждение, но использующий определённый тип теплообменника. В этом случае влажный, охлаждённый воздух не контактирует с кондиционируемой средой.
Двухстадийное испарительное охлаждение, или непрямое/прямое.
Традиционные испарительные охладители используют только часть энергии необходимой аппаратам парокомпрессионного охлаждения или системам адсорбционного кондиционирования. К сожалению, они повышают влажность воздуха до дискомфортного уровня (за исключением очень сухих климатических зон). Двухстадийные испарительные охладители не повышают уровень влажности настолько, насколько это делают стандартные одноступенчатые испарительные охладители.
На первой стадии двухстадийного охладителя, тёплый воздух охлаждается непрямым путём без увеличения влажности (с помощью прохождения через теплообменник, охлаждаемый испарением снаружи). В прямой стадии предварительно охлаждённый воздух проходит через пропитанную водой прокладку, дополнительно охлаждается и становится более влажным. Поскольку в процесс включена первая, предохлаждающая стадия, на стадии прямого испарения необходимо меньше влажности для достижения требуемых температур. В результате, по словам производителей, процесс охлаждает воздух с относительной влажностью в пределах 50 — 70 %, в зависимости от климата. Для сравнения традиционные системы охлаждения повышают влажность воздуха до 70 — 80 %.
Назначение
При проектировании центральной приточной системы вентиляции возможно оснастить воздухозабор испарительной секцией и так существенно снизить затраты на охлаждение воздуха в теплый период года.
В холодный и переходной периоды года, при нагреве воздуха приточными калориферами систем вентиляции или воздуха внутри помещения системами отопления — воздух нагревается и растет его физическая возможность ассимилировать (впитать) в себя, при увеличении температуры — влагу. Или, чем выше температура воздуха — тем больше влаги он может в себя ассимилировать. Например, при нагреве наружного воздуха калорифером системой вентиляции с температуры -220С и влажности 86% (параметр наружного воздуха для ХП г.Киева), до +200С — влажность падает ниже граничных пределов для биологических организмов до недопустимых 5-8% влажности воздуха. Низкая влажность воздуха — негативно влияет на кожу и слизистые оболочки человека, особенно больных астмой или легочными заболеваниями. Нормированная для жилых и административных помещений влажность воздуха: от 30 до 60%.
Испарительное охлаждение воздуха сопровождается выделением влаги или увеличения влажности воздуха, до высокого насыщения влажности воздуха 60-70%.
Преимущества
Объем испарения – и, соответственно, теплоперенос – зависит от температуры наружного воздуха по мокрому термометру которая, особенно летом, намного ниже, чем эквивалентная температура по сухому термометру. Например, в жаркие летние дни, когда температура по сухому термометру превышает 40°C, испарительное охлаждение может охладить воду до 25°C или охлаждать воздух.
Поскольку испарение удаляет намного больше тепла, чем стандартный физический теплоперенос, для теплопереноса используется в четыре раза меньший расход воздуха по сравнению с обычными методами охлаждения воздуха, что сохраняет значительное количество энергии.
Испарительное охлаждение в сравнении с традиционными способами кондиционирования воздуха. В отличие от других видов кондиционирования воздуха охлаждение воздуха испарительного типа (био-охлаждение) не использует в качестве хладагентов вредные газы (фреон и другие), которые наносят вред окружающей среде. Оно также потребляет меньше электричества, экономя таким образом электроэнергию, природные ресурсы и до 80 % эксплутационных затрат по сравнению с кондиционированием воздуха другими системами.
Недостатки
Низкая эффективность работы во влажном климате. Повышение влажности воздуха, что в некоторых случаях нежелательно — выход двухстадийное испарение, где воздух не контактирует и не насыщается влагой.
Принцип работы (вариант 1)
Процесс охлаждения осуществляется за счет тесного контакта вода и воздуха, и переноса тепла в воздух путем испарения небольшого количества воды. Далее тепло рассеивается через выходящий из установки теплый и насыщенный влагой воздух.
Обозначения:
- подача воды
- система раздачи воды для орошения воздухопропускных кассет
- поверхность теплопередачи с помощью двух кассет
- нагнетатель воздуха (вентилятор или патрубок вентсистемы)
- воздухозабор
- поддон сбора стекшей воды
- выпуск (обратка) холодной воды
- подача насыщенного влагой воздуха
- каплеуловители
Испарительный охладитель-увлажнитель воздуха (биоклиматизатор) SABIEL МВ16 сочетает функции охладителя, увлажнителя, аквафильтра, вентилятора и ионизатора воздуха. Производительность 1600 м3/час! Потребление электроэнергии 100 Вт
Принцип работы (вариант 2) — установка на воздухозаборе
Установки испарительного охлаждения
Существуют различные типы установок для испарительного охлаждения, но все они имеют:
- секцию теплообмена или теплопереноса, постоянно смачиваемую водой методом орошения,
- систему вентиляторов для принудительной циркуляции наружного воздуха через секцию теплообмена,
- другие вспомогательные компоненты, такие как поддон для сбора воды, каплеуловители и органы управления.
Источник