Тепловой насос сточных водах

Об использовании тепла сточных вод

А.М. Ройзен, к.ф.-м.н., научный руководитель проектов, компания «ААЗ» (Ассоциация Авторской Защиты), г. Санкт-Петербург

Идея возврата части тепловой энергии, уходящей в канализацию с горячей водой не нова, но в силу разных причин широкого распространения в России не получила. Мы не будем обсуждать здесь все причины, затронем лишь те, которые требуют определенных технических решений.

Обычная схема включает в себя тепловой насос и систему теплообменных устройств, которые устанавливаются на очищенных стоках. Тепловой насос, отбирая от стоков низкопотенциальную энергию, повышает температуру теплоносителя в выходном контуре. Главным недостатком такого решения является проблема ретранспортировки полученной энергии. Недостаток устраняется, если оборудовать такой системой не городской коллектор, а например отдельный дом. В этом случае отбор энергии придется производить от неочищенных стоков, что потребует создания непростых теплообменных устройств. Теплообменник не должен препятствовать движению стоков загрязненных всевозможными твердыми, волокнистыми жировыми и прочими включениями. Неизбежное заиливание стенок не должно существенно ухудшать режим отбора тепла. Необходимо предельно снизить эксплуатационные затраты и упростить обслуживание системы. Учитывая сравнительно большой срок окупаемости (4-5 лет), требуется обеспечить соответствующую долговечность системы.

Читайте также:  Контрольная по внутренним водам россии

Разработчики нашей компании имеют в своем арсенале решение, касающееся теплообменных устройств. Но отсутствуют еще два необходимых элемента разработки: теплоаккумулятор с гидрообвязкой и автоматика. Для разработки этих позиций требуется привлечение дополнительных средств.

Для определения эффективности предлагаемой разработки, приведем некоторые экономические оценки.

Нормы расхода горячей воды и энергии для ее приготовления в расчете на одного человека за один месяц составляют 4,7 м³ и 0,28 Гкал соответственно. Стоимость 1м³ воды составляет 19 руб., стоимость 1 Гкал 1050 руб., включая НДС. Данные усреднены для центральной части России.

Для определенности проведем расчеты на один подъезд пятиэтажного дома. В таком подъезде проживает порядка 50 чел.

Объем стока горячей воды составит:

50 * 4,7 = 235 м³/мес. или 7,83 м³/сут.

Учитывая, что основное потребление приходится на 3-4 вечерних часа и 1-2 утренних, примем продолжительность эффективного теплосъема равной 6 ч, т.е. усредненный поток составит 1,3 м³/ч.

Энергосодержание этих стоков составит:

Гкал
или 90,4 кВт·ч

Поскольку снять удастся только 40-50% энергии, то в итоге получаем порядка 40 кВт·час.

Учитывая, что тепловой насос на каждый отобранный от среды 1 кВт . ч энергии затрачивает примерно 0,25 кВт . ч электроэнергии, мощность теплового насоса должна составлять 10 кВт. Стоимость теплового насоса составляет примерно 15 тыс. руб. за один 1 кВт, т.е. необходимый нам насос будет стоить 150 тыс. руб. Остальное оборудование и монтаж будут стоить примерно 70 тыс. руб.

Возвращаемая энергия в денежном выражении составит:

0,28 Гкал * 50 чел. * 0.5 * (1050 + 19) руб.= = 7483 руб./мес.

Затраты на электроэнергию составят:

Отнесем 83 руб. на эксплуатационные затраты и в итоге получим 3800 руб.

Срок окупаемости составит:

лет.

На самом деле срок окупаемости будет короче, поскольку стоимость горячего водоснабжения будет неуклонно расти. Только в 2010 г. эти цены возросли в среднем на 23%.

Заключение

Использование тепловых насосов в системе возврата тепловой энергии могло бы считаться очень эффективным при значительно меньшей их стоимости. Но импортное оборудование такого плана очень дорого. В настоящее время мы работаем над созданием импортозамещающего оборудования для утилизации вторичных ресурсов. Разработчики нашей компании уже приступили к реализации проекта внедрения теплообменников для Комитета по строительству и ЖКХ одного из регионов. Планируемое окончание проекта — конец 2010 г. Мы надеемся представить на рынок свою уже апробированную установку с оценкой ее эффективности от самих эксплуатационных организаций и структур. Ее станет возможно тиражировать и на другие регионы.

Но для запуска всей системы возврата тепловой энергии стоков — действительно эффективной и надежной, — необходимы еще два элемента разработки: теплоаккумулятор с гидрообвязкой и автоматика. Изготовление и монтаж этих двух элементов не может быть стандартным — проект является адресным и адаптированным к конкретным условиям. Расчет должен быть привязан к конкретному объекту.

ДЛЯ СПРАВКИ

Эффективность тепловых насосов

В процессе работы компрессор затрачивает электроэнергию. На каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2,5-5 кВт . ч тепловой энергии. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возможности большее количество теплоносителя из источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса.

Материал из Википедии

Одним из возможных вариантов дальнейшего внедрения мы видим выполнение и запуск пилотного проекта полной системы в Санкт-Петербурге. Т.о., мы стараемся добиться политической воли на запуск системы энергосбережения через утилизацию вторичных энергоресурсов как для отдельных объектов, так и в системе ЖКХ.

Расчет показывает, что:

при установке такой системы на три дома, снятая с коллектора тепловая энергия целиком покрывает потребность в горячем водоснабжении одного из этих домов;

при установке на каждый подъезд 6-ти подъездного 130-ти квартирного дома тепловая энергия 5-ти из них обеспечивает потребность 6-го в горячем водоснабжении;

объектами для установки могут стать как старые дома, поставленные на капитальный ремонт, так и новые объекты.

Посмотреть данную технологию более подробно,
Вы можете в Каталоге энергосберегающих технологий

Источник

Утилизация тепла канализационных стоков

Общие изменения в экономике России привели к пересмотру взглядов на использование нетрадиционных источников энергии. Учитывая, что территория нашего государства находится в широтах, где наружная температура воздуха опускается ниже 0°С в течение 6–8 месяцев в году, в России расход топлива на теплоснабжение превосходит расход топлива на электроснабжение в 1,5–2 раза. Следовательно, с ростом цен на топливо, тарифов на его доставку возникает необходимость решать задачи по уменьшению потребления топливных ресурсов. Существует также проблема изношенности тепловых сетей в системах централизованного теплоснабжения. Холодная зима 2002–2003 годов, оставив без тепла целые регионы России, наглядно это продемонстрировала. В связи с вышеуказанными проблемами решение вопросов энергосбережения и надежного теплоснабжения приобрело колоссальное значение. В странах Западной Европы, США и Японии уделяется большое внимание использованию альтернативных источников энергии. Одним из таких источников является низкопотенциальное тепло, передаваемое потребителю посредством теплового насоса. В данной статье рассматривается использование тепловых насосов, утилизирующих тепло канализационных стоков.

Принцип действия тепловых насосов

Тепловой насос представляет собой термодинамическую установку, в которой благодаря затрате механической энергии теплота от низкопотенциального источника передается потребителю при более высокой температуре.

Парокомпрессионный тепловой насос (рис. 1) состоит из испарителя, компрессора, посредством которого происходит сжатие паров рабочей жидкости (холодильного агента), конденсатора, в котором происходит переход парообразного холодильного агента в жидкое состояние, и дроссельного вентиля, в котором происходит процесс дросселирования, т. е. необратимого расширения жидкости с понижением давления и температуры. В результате часть жидкости превращается в пар, при этом ее энтальпия остается неизменной. В испарителе поддерживаются более низкие, а в конденсаторе более высокие температура и давление холодильного агента. Холодильный агент в конденсаторе превращается в жидкость, затем в дроссельном вентиле его давление понижается и он частично превращается в пар. Теплота, отводимая от конденсатора, используется для нагревания теплоносителя.

Схема теплового насоса:

4 – дроссельный вентиль;

5 – электрическая энергия;

6 – теплота от низкопотенциального источника тепловой энергии;

7 – теплота, отводимая от конденсатора

Тепло канализационных стоков

Холодная вода поступает зимой в здание с температурой 5–8°С. Затем она прогревается в трубопроводах, бачках, нагревается, смешиваясь с горячей водой, и покидает здание с температурой 20–30°С. Канализационные стоки уносят с собой очень большое количество тепла. Современные теплонасосные установки позволяют утилизировать тепло канализационных стоков и приблизить их температуру к температуре поступающей воды.

Первая система DHC в Японии, использующая необработанные сточные воды как источник нагрева и охлаждения воды

DHC (district heating and cooling) system – Первая система централизованного тепло- и холодоснабжения

Введение

Впервые в Японии, в районе Koraku 1-chome в Токио, для теплоснабжения района установлена система DHC, использующая тепло необработанных сточных вод. Как ожидается, использование тепла сточных вод уменьшит потребление энергии и выброс парниковых газов. Применение этой системы уменьшает потребление энергии на 20%, выброс CО2 и NOx на 40 и 37% соответственно.

Сточные воды уже использовались в других проектах как источник низкопотенциального тепла для тепловых насосов. Однако проект в Токийском районе Koraku 1-chome уникален тем, что впервые в Японии используются неочищенные, необработанные сточные воды; позволяет использовать тепловые насосы не только на очистных станциях, но и на станциях перекачки и канализационных сетях.

В дальнейшем ожидается значительное увеличение использования сточных вод в качестве источника низкопотенциального тепла.

Цель проекта

Объем канализационных стоков, производимых в огромных количествах большими городами, практически не изменяется в течение года. Температура сточных вод ниже температуры наружного воздуха в летнее время и выше в зимнее. Это делает их идеальным источником низкопотенциального тепла для использования в тепловых насосах. По некоторым оценкам, в городские коммуникации вместе со сточными водами сбрасывается около 40% использованного тепла. Цель проекта заключается в том, чтобы использовать этот огромный источник тепла для районной системы DHC, работающей на тепловых насосах, экономя значительное количество энергии и существенно сокращая выбросы NOx и CО2.

Описание установки

Теплообменники на DHC-станции сконструированы ниже насосной станции для перекачки сточных вод. Они используются для передачи тепловому насосу тепла сточных вод, текущих через насосную станцию. Тепловой насос позволяет получить охлажденную или подогретую воду (рис. 1). Эта система уменьшает потребление энергии (электроэнергии) на 20% по сравнению с тепловым насосом, использующем воздух в качестве низкопотенциального источника тепла.

Для удаления большинства взвешенных твердых частиц в стоках применяется автоматический фильтр (рис. 2). Для защиты от коррозии деталей насоса используется нержавеющая сталь, для труб теплообменника – титан.

Схема системы DHC, установленной в районе Koraku 1-chome в Токио, Япония

Очищаются трубы теплообменника установленными внутри щетками

На DHC-станции смонтированы 3 тепловых насоса, 2 с охлаждающей способностью 10,5 МВт и нагревающей способностью 12,8 МВт каждый и 1 тепловой насос с охлаждающей способностью 3,9 МВт и нагревающей – 5 МВт. Этот насос используется периодически, когда возникает необходимость подачи горячей и холодной воды одновременно. Расход сточных вод, проходящих через DHC-станцию, составляет до 129 600 м 3 в день. Станция охлаждает воду до +7°C и нагревает до +47°C и обеспечивает этой водой здание общей площадью 126 400 м 2 , подавая ее через тепловую сеть, выполненную по 4-трубной схеме, проложенную под землей на глубине 7–8 м.

Для выравнивания тепловой нагрузки и использования недорогого ночного электричества на станции установлены баки-аккумуляторы общим объемом 1 520 м 3 .

С апреля 1995 по март 1996 года станция DHC обеспечила 37 741 ГДж тепловой энергии для охлаждения воды и 9 151 ГДж для получения горячей воды. В августе 1995 года коэффициент преобразования теплонасосной установки составил 4,3. В феврале 1996 года – 3,9.

Поделиться статьей в социальных сетях:

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.

Статья опубликована в журнале “Сантехника” за №1’2003

распечатать статью —>

Источник

Тепловые насосы для российских городов

А. А. Потапова, Институт проблем энергетической эффективности (ИПЭЭф), Московский энергетический институт (Технический университет)

А. В. Говорин, Институт проблем энергетической эффективности (ИПЭЭф), Московский энергетический институт (Технический университет)

А. В. Албул, Институт проблем энергетической эффективности (ИПЭЭф), Московский энергетический институт (Технический университет)

Бурно развивающийся рынок тепловых насосов малой мощности (до 100 кВт) позволяет предположить возможность эффективного использования аналогичных устройств большой мощности – до 30 МВт и более. Их применение особо актуально в городах, где остро стоит проблема утилизации тепловых отходов, например, сточных вод. Немаловажными являются вопросы использования в тепловых насосах экологичных хладогентов.

Применение высокотемпературных тепловых насосов

Каковы перспективы применения мощных тепловых насосов для модернизации и развития систем теплоснабжения? Их преимущества по сравнению с маломощными тепловыми насосами заключаются в следующем:

  • более низкие удельные капиталовложения (на 1 кВт тепловой мощности);
  • меньшая занимаемая площадь по сравнению с большим количеством маломощных тепловых насосов;
  • более высокие технико-экономические показатели отдельных элементов (например, изоэнтропный КПД компрессора) и теплового насоса в целом.

В нашей стране наиболее крупные парокомпрессионные тепловые насосы с винтовыми компрессорами производят в Новосибирске (ЗАО «Энергия») тепловой мощностью 500–3 000 кВт (большая мощность достигается за счет объединения блоков по 500 кВт), с центробежными компрессорами – в Казани (НПО «Казанькомпрессормаш») тепловой мощностью до 8,5–11,5 МВт.

В мире наиболее крупные парокомпрессионные тепловые насосы имеют тепловую мощность до 30 МВт с двухступенчатыми центробежными компрессорами.

Для теплоснабжения Стокгольма построена и работает станция тепловых насосов с 6 агрегатами общей мощностью 180 МВт. В качестве источника теплоты используется морская вода, в зимний период температура которой опускается до 2–4 °С. В Хельсинки и Осло работают тепловые насосы на сточных водах. В летний период они производят одновременно тепло для горячего водоснабжения и холод для кондиционирования крупных торговых и бизнес-центров.

Применение тепловых насосов большой мощности наиболее эффективно в крупных городах, где большие тепловые и холодильные нагрузки в течение длительного периода и где остро стоит проблема утилизации отходов, в том числе и тепловых, таких как сточные воды.

Тепловой насос на сточных водах

В качестве примера рассмотрим работу теплового насоса с двухступенчатым центробежным компрессором и промежуточным сосудом с тепловой мощностью 17 МВт. На рис. 1 представлена схема такого теплового насоса с температурой в испарителе 3,5 °С и 90,1 °С в конденсаторе. В качестве рабочего тела используется хладагент R-134a (1,1,1,2-тетрафторэтан CH2F-CF3) с температурой 101,08 °С и давлением 40,603 бар в критической точке, не оказывающий влияния на озоновый слой.

Тепловая схема высокотемпературного теплового насоса при использовании тепла сточных вод.

По результатам расчета теплового насоса [1] потребление электрической энергии на привод компрессора получилось равным Nэ = 7 075 кВт.

Коэффициент трансформации тепла, определяемый как отношение тепловой мощности компрессора к величине потребляемой им электрической энергии, получается равным 17 000/7 075 = 2,40.

Это немного, однако нужно учитывать, что специально выбирался вариант расчета теплового насоса с большим диапазоном разности температур хладагента в испарителе и конденсаторе:

t = 90,1 – 3,5 = 86,6 °С, недоступный для большинства других типов тепловых насосов.

При подаче в испаритель охлаждаемой воды в летний период вместо сточных вод тепловой насос помимо тепла может производить холод для систем кондиционирования, при этом его холодопроизводительность будет равна Qисп = 10 073 кВт.

Тепловой насос на обратной сетевой воде

В статье [2] рассматривается возможность применения тепловых насосов, использующих теплоту обратной сетевой воды в непосредственной близости от потребителей (на ЦТП, пиковой котельной и т. д.), которая возвращается на ТЭЦ из системы централизованного теплоснабжения.

Одним из важных достоинств такой тепловой схемы является снижение температуры обратной воды, что позволит повысить комбинированную выработку электроэнергии на ТЭЦ на тепловом потреблении. Это тем более актуально в связи с тем, что температура обратной сетевой воды постоянно завышается, чему есть много разных причин, и не только технических. В двух таких разных городах, как Краснодар и Красноярск, было отмечено превышение температуры воды в обратной линии систем теплоснабжения в зимний период над нормативной по тепловому графику на 5–8 °С.

Для сравнения был проведен расчет рассмотренного выше теплового насоса на тепле обратной сетевой воды. Было принято, что температура хладагента в конденсаторе равна тем же 90,1 °С, а в испарителе 40 °С. Часть сетевой воды, поступающая из обратного трубопровода системы теплоснабжения, направляется в испаритель, где охлаждается с 58 до 46 °С и затем возвращается на ТЭЦ. Вода из обратной линии внутреннего контура системы отопления локального потребителя, направляется в конденсатор теплового насоса и нагревается с 58 до 88 °С для возврата потребителю.

При тепловой мощности конденсатора 17 000 кВт потребление электрической энергии на привод компрессора составит 4 050 кВт, а коэффициент трансформации тепла соответственно будет равен 4,20.

При определении мест для установки и наиболее эффективной работы тепловых насосов в системе централизованного теплоснабжения необходимо определить приоритетную шкалу их энергетической и экономической эффективности. Для определения такой шкалы наиболее интересной представляется работа [3] , согласно которой тепловые насосы должны в первую очередь замещать электрические котлы и водогрейные котлы на органическом топливе и не снижать комбинированную выработку электроэнергии ТЭЦ на тепловом потреблении.

Перспективы применения высокотемпературных тепловых насосов для развития систем теплоснабжения Москвы

Создание крупных теплонасосных установок (мощностью до 100 МВт) для развития систем теплоснабжения города Москвы активно обсуждалось в конце 1970-х годов, однако, к великому сожалению, эта программа не была принята к реализации.

Мировой опыт развития крупной теплонасосной техники 1980–2000 годов полностью подтвердил их высокую энергетическую эффективность.

Для создания современных тепловых насосов большой мощности необходимо присутствие нескольких факторов: государственная программа целевого финансирования; законодательство, стимулирующее применение энергосберегающего и экологически чистого оборудования; уровень цен на энергетические ресурсы, вынуждающий потребителей внедрять энергосберегающую технику.

Другим вариантом (не альтернативным) является закупка зарубежного теплового насоса большой мощности для демонстрационного проекта теплоснабжения одного из районов Москвы.

В условиях относительно низких цен на природный газ эффективным может стать проект создания теплового насоса с газопоршневым и газотурбинным приводом и утилизацией тепла в котле-утилизаторе.

Также перспективным может быть применение абсорбционных тепловых насосов с газовым обогревом. В [4] показано, что при развитии систем теплоснабжения абсорбционные и парокомпрессионные тепловые насосы не должны противопоставляться друг другу, но нужно использовать лучшие качества каждого из них и находить такие комплексные решения, которые позволили бы получить максимальную выгоду от их совместного использования при производстве тепла и холода для кондиционирования.

Основным заказчиком для реализации тепловых насосов большой мощности может стать ОАО «МОЭК». Для реализации тепловых схем с тепловыми насосами на сточных водах и обратной сетевой воде в совместную работу могут быть вовлечены МГУП «Мосводоканал» и ОАО «Мосэнерго», что даст значительный энергосберегающий и экологический эффект для Москвы.

Создание экологичных хладагентов

Актуальной является проблема использования в тепловых насосах систем теплоснабжения хладагентов, не влияющих на озоновый слой и на глобальное потепление.

В 1990-е годы в России рядом институтов страны был выполнен большой объем работ по переводу промышленности на новый класс химических соединений взамен запрещенных озоноразрушающих веществ (ОРВ). В результате проведенных исследований предложена номенклатура новых хладагентов: гидрофторуглероды ГФУ R-134а,

R-152a, R-125, R-32 и др. Основное отличие данных соединений от ОРВ – отсутствие в их молекулах атомов хлора и брома, которые могут участвовать в цикле разложения озона. Кроме нулевого значения озоноразрушающего потенциала (ODP) и величины потенциала глобального потепления климата (GWP) главным критерием при выборе заменителей ОРВ является близость физико-химических и эксплуатационных свойств к аналогичным характеристикам заменяемых ОРВ. Основные свойства хладагентов представлены в таблице.

В мире намечается тенденция активного использования хладагентов четвертого поколения, имеющих высокую эффективность, не влияющих на озоновый слой и оказывающих минимальное воздействие на глобальное потепление (рис. 2).

История развития хладагентов

На основе моделирования построена прогнозная P-H диаграмма тепловых процессов (рис. 3), происходящих в тепловом насосе на новом хладагенте четвертого поколения R-1234ze(E) (тетрафторпропилене CF3CH=CHF). Из диаграммы видно, что двухступенчатая схема с промежуточным сосудом позволяет наиболее простым и надежным способом обеспечить высокотемпературный нагрев сетевой воды системы теплоснабжения [4]. Промежуточный сосуд действует как сепаратор фазы при промежуточном давлении после попадания туда парожидкостной смеси (поток 7 на рис. 1) и перегретого пара (поток 2) и является самым легким способом создания двухступенчатой системы (без риска попадания жидкости во вторую ступень компрессора с потоком 11). Дополнительное повышение эффективности дает переохлаждение хладагента в переохладителе (процесс 3–6), т. к. при этом повышается передаваемая потребителю тепловая нагрузка в конденсаторе (процесс 5–6) без увеличения расхода хладагента.

Прогнозная P-H диаграмма тепловых процессов работы двухступенчатого теплового насоса на хладагенте 1234ze(E) на сточных водах

Сравнение характеристик теплового насоса по коэффициенту трансформации тепла показывает, что для R-134а μ= 2,4 [1], для R-1234yf = 2,2, для

R-1234ze(E)μ = 2,6. Большее значение коэффициента трансформации для хладагента R-1234ze(E) во многом обусловлено большим значением критической температуры (см. таблицу).

* Смесь R-32/125/134a (23/25/52 %).

Потенциальный рынок для новых экологичных хладагентов – это полная замена всех ОРВ, переходных ОРВ, а также озонобезопасных хладагентов в тепловых насосах, в промышленных холодильных машинах и бытовых холодильниках, в системах кондиционирования зданий и автомобилей. В последующем новые материалы на основе фтора, не влияющие на глобальное потепление, могут найти применение для систем пожаротушения, производства пеноматериалов в строительстве и т. д.

Таким образом, необходимо найти новые хладагенты четвертого поколения с GWP

Поделиться статьей в социальных сетях:

Источник

Оцените статью
Таблица
Свойства различных хладагентов
Хлада-
генты
Озоно-
разруша-
ющий
потенциал
(ODP)
Озоно-
разру-
шаю-
щий
потен-
циал
(ODP)
Потен-
циал
глобаль-
ного
потеп-
ления
климата
(GWP)
Моль-
ная
масса,
г/моль
Нормаль-
ная тем-
пература
кипения
при дав-
лении
1 атм, °С
Крити-
ческое
давле-
ние,
МПа
Крити-
ческая
темпе-
ратура,
ºС
ОРВ R-12
(CF2Cl2)
1 10900 120,9 –29,8 4,13 112,0
R-22
(CHClF2)
0,055 1780 86,5 –40,8 4,99 96,1
Озоно-
безопас-
ные
R-134a
(CF3CH2F)
0 1430 102 –26,1 4,06 101,1
R-32
(CH2F2)
0 720 52,0 –51,7 5,79 78,1
R-407C* 0 1800 86,2 –43,6 4,63 86,0
Озоно-
безопас-
ные с
малым влиянием
на глобаль-
ное потеп-
ление
R-290
(CH3CH2CH3)
0 20 44,1 –42 4,25 96,8
R-717
(NH3)
0 0 17,0 –33,3 11,33 132,3
R-744
(CO2)
0 1 44,01 –78,4 7,38 30,98
R-1234yf
(CF3CF=CH2)
0 4 114 –29 3,38 95,0
R-1234ze(E)
(CF3H=CHF)
0 8** 114 -19** 3,58** 111**