Ток течет как вода

Вода и электрический ток

Чтобы вещество смогло проводить электрический ток, в нем должны присутствовать заряженные частицы, способные свободно перемещаться через весь его объем под действием приложенного электрического поля. В металлических проводниках, например, такими заряженными частицами выступают свободные электроны, а в электролитах — положительно и отрицательно заряженные ионы.

Диэлектрики вовсе не проводят постоянный электрический ток, поскольку заряженные частицы в их структуре хотя и есть, однако они связаны друг с другом, и не могут свободно перемещаться, образуя ток.

Но переменный ток пропускают даже диэлектрики, это называется током смещения, например конденсатор в цепи переменного тока на определенной частоте будет проводить ток так, словно является проводником.

Обычная неочищенная вода

Что касается обычной воды (речной, водопроводной, особенно — морской и т. д.), то в ней всегда присутствуют растворенные минеральные вещества, которые под действием приложенного электрического поля распадаются на ионы, способные двигаться как в электролите.

По этой причине обычная неочищенная вода проводит ток, ведя себя подобно слабому электролиту. Если через такую воду попытаться пропустить ток, то в течение небольшого времени он будет через нее идти, хотя и слабо.

Теоретически идеально чистая вода

Теоретически, если воду полностью очистить от примесей, то есть удалить из ее объема абсолютно все вещества, включая соли, газы, остатки кислот, то она станет диэлектриком, и будет вести себя как изолятор.

В ней не будет ионов, способных двигаться под действием электрического поля и образовывать ток, а сами молекулы воды — электрически нейтральны. Такую воду можно было бы использовать, например, в качестве диэлектрика между пластинами конденсатора.

Реальная дистиллированная вода

Но в реальности даже дистиллированная вода (вода, очищенная путем испарения с последующей конденсацией пара) не бывает абсолютно чистой.

Есть российский ГОСТ 6709-72, определяющий массовую концентрацию остатка примесей в такой дистиллированной воде — не более 5 мг на литр, и минимальное удельное сопротивление не менее 2 кОм*м.

То есть куб дистиллированной воды со стороной длиной в 1 метр, с приложенными к нему по краям электродами, будет иметь сопротивление минимум 2 кОм. А если представить разлитую по полу дистиллированную воду, скажем, в объеме одного стакана (200 мл), то ее сопротивление в лучшем случае окажется 200 кОм. Можно сказать, что это практически — диэлектрик.

Нет смысла пытаться использовать такую воду как проводник постоянного тока. С этой точки зрения дистиллированная вода не проводит электрический ток. Ее обычно используют для коррекции плотности электролитов.

Почему стоит опасаться контакта любой воды с электричеством

Однако люди не зря боятся контакта любой воды с электричеством, особенно — с переменным напряжением из розетки. Даже сетевое напряжение с провода, упавшего в лужу воды, на которую может случайно наступить человек, способно вызвать миллиамперный переменный ток, которого будет достаточно для причинения организму вреда.

Человеческое тело и фаза из розетки, соединенные через лужу разлитой воды, образуют цепь с реактивными элементами, и если человек в такой ситуации случайно коснется заземленного предмета, то его ударит током. Вот почему необходимо избегать контакта электричества с водой. Как вы понимаете, с дистиллированной водой риск причинения вреда меньше, но он все равно остается. Поэтому лучше избегать попадания любой воды на электрические приборы.

Источник

Электропроводка и трубопровод: аналогии и различия

Будучи электриком, часто сталкиваешься с тем, что вполне здоровые и развитые как физически, так и умственно люди испытывают состояние благоговейного ужаса перед электричеством. При этом, скажем, устройство водопровода и канализации не кажется им очень уж сложным.

Еще бы: бежит себе вода по трубам под давлением, а по трубам большего диаметра отводится в канализацию – все «проще пареной репы». Просто жаль таких людей, с тревогой поглядывающих на источающую искры розетку и ожидающих электрика, который бы произвел ее замену.

И раз уж многим людям, испытывающим страх перед электричеством, водопровод кажется устроенным более просто, то приведем некоторые физические аналогии между электрическим током и течением воды.

В каком направлении бежит вода? – Из точки с большим давлением — в точку с меньшим. Между точками с одинаковым давлением на стенки трубы течения воды не будет. Но ведь и электрический ток ведет себя также: он возникает между точками проводника, имеющими разное значение электрического потенциала. Аналогия проста: труба схожа с проводником, поток воды – с электрическим током, а давление в трубопроводе – с электрическим потенциалом.

Основываясь на этих аналогиях, мы можем подобрать своеобразные «альтер эго» некоторых бытовых электротехнических устройств и явлений. Эти «вторые Я» будут относиться к сантехнике и водопроводу.

Возьмем, к примеру, электрический выключатель. Что он делает? – Соединяет и разъединяет два провода, причем один из них «фаза», и по нему приходит ток, а второй провод идет к нагрузке. Нулевые провода к выключателю не подключаются.

Аналогами для электрических выключателей среди трубопроводной арматуры будут задвижки на холодной и горячей воде на вводе в квартиру. Эти задвижки, или вентили, как правило, находятся в одном из состояний: «выключено» или «включено», собственного сопротивления они не имеют, и предназначение их состоит в подаче воды потребителю. А любой выключатель точно также подает потребителю (например, светильнику) электрический ток. Аналогия очевидна.

Чтобы найти аналог для штепсельной розетки, придется немного проявить фантазию. В розетку приходят два провода, и они не имеют между собой контакта. Еще бы, ведь это «фаза» и «ноль», о последствиях непосредственного соединения которых, думаю, рассказывать нет необходимости. Тока в розетке нет, если не включен потребитель. А когда потребитель включен, ток определяется его сопротивлением.

Что же является «фазой» для водопровода? Это, конечно, тонкая подводная труба, находящаяся под давлением. Рабочим «нулем» является отводная канализационная труба. Отличие от электропроводки здесь в том, что для воды вся окружающая среда является проводником, поэтому «фазный проводник» всегда нуждается в дополнительных запирающих устройствах (дросселях). В сантехнике эти дроссели можно звать кранами, и в закрытом состоянии они полностью берут на себя все давление (читай: напряжение), не допуская утечек.

В розетке, конечно, дроссели не ставят, а в остальном они очень похожи на кран, установленный над раковиной. Потребителем может быть, к примеру, стиральная машинка, заливной шланг которой подключен к гусаку, а сливной – направлен в раковину. Открываем кран на полную – его сопротивление падает практически до нуля, но короткого замыкания нет, потому что есть сопротивление машинки.

Кстати, короткое замыкание в водопроводе, – какое оно? Открываем кран над раковиной полностью, отключив вышеупомянутую машинку, и наблюдаем. Вода шумит и брызжется, и, возможно, даже раковина не справляется с прибывающим потоком. Но, все же, это не так впечатляюще, как электрическое короткое замыкание, буквально все сметающее на своем пути. Это означает, что водопровод более стоек к своим коротким замыканиям, и они для него являются рабочим режимом. Поэтому водопровод не оснащается «максимально-токовой защитой».

Конечно, приведенные аналогии весьма условны, и, в частности, никак не учитывают существование электромагнитных полей. Да и в электронику лезть с «водопроводными» представлениями об электрическом токе не стоит. Но на минимальном бытовом уровне сравнение с водопроводом может быть популярным и полезным.

Источник

Электричество как вода. #3

Электричество как вода. #3

Привет водяным электрикам!

Третья часть эпопеи “Электричество Как Вода” начинается.

В прошлой части я задал вопросы, на которые пообещался ответить. Но, чтобы на них ответить, мне стоит объяснить ещё пару-тройку электрических характеристик, конечно же, на примере воды.

Достаточно простая водяная метафора для силы тока — расход. Расход воды. Количество литров за секунду. Т.е. сила тока во всей цепи — количество воды, проходящей по всем нашим соединённым трубам, за одну секунду.

Сила тока на резисторе (прибор, создающий сопротивление) — количество заряда, проходящего за секунду.

Если мы говорим про воду: расход воды в сужении трубы — количество прошедшей воды за 1 секунду.

Работа она и есть работа. На земле стояло 2 ведра, подняли на высоту 1 м — совершили работу.

Вода по трубам переместилась — совершила работу.

В электричестве за МЕРУ работы берётся не перемещение тока, а его физическое влияние на цепь, т.е. нагревание (и не только, но не берём во внимание). Ведь, когда ток проходит по всем нашим лампам, зарядникам, мониторам, он их нагревает.

И в итоге получается, что количество теплоты, которое цепь выделяет, = количество совершенной электричеством работы.

Мощность — величина, показывающая производительность, способность выполнять работу. Мощность определяет количество работы, которую кто-то может выполнить за 1 секунду. Т.е. работа, делённая на время.

Взять пример с вёдрами: если мы два ведра на 1 метр подняли за 4 секунды, то наша мощность — половина ведра в секунду. (два ведра за 4с, одно за 2с, половина за 1с). если мы два ведра подняли за 1 секунду, наша мощность — 2 ведра в секунду.

В электрических цепях мощность отдают (вырабатывают) источники тока/напряжения, а поглощают — лампочки, резисторы и всё остальное, имеющее сопротивление.

С характеристиками, кажется, разобрались.

А теперь ответы на вопросы из второй части:

А может ток быть, а напряжение — нет? А наоборот?

В идеальных моделях — да. В реальном мире — нет.

  • Напряжение без тока: если замерить напряжение на выключателе света в комнате, когда он в положении “выключенного света”, мы увидим, что на нём есть напряжение, но ток по нему не идёт, потому что он в положении 0. В этом положении у него огромное сопротивление, которое не даёт течь току. Как труба, в которой закрыли кран: вода хочет литься, но кран не даёт. В раковине, в ванной, в кухне — напряжение есть, но не течёт — вы ж закрыли всё!
  • Ток без напряжения: Представьте участок цепи от источника до лампочки. Вот перед вами провод. Лампочка горит. Ток есть. Если вы замерите напряжение на проводе, не замеряя ни на лампочке, ни батарейке, а просто на проводе, в двух близко расположенных точках — напряжения не будет. Лампочка горит — ток есть. Ток есть — напряжения нет.

Но в реальном мире всё-таки так не бывает. В первом случае сила тока через переключатель идти будет — но слишком маленькая, чтобы расшевелить цепь. Если бы сопротивление было бесконечным (идеальным) — тока не было. Но у переключателя сопротивление конечное (но огромное), поэтому по переключателю пойдёт ток, так называемый ток утечки. Но его значение будет мало и незначительно. Во втором случае напряжение всё-таки существовать будет — только тоже очень маленькое. Ведь у провода тоже есть сопротивление, вследствие которого возникает напряжение и небольшая потеря силы тока.

Такая разница возникает всё по той же причине: ничто не идеально.

Бьет от электричества напряжением или током?

Током. По вам же должно что-то течь. Чтобы задело. Т.е. током.

А в розетке что — напряжение или ток?

Напряжение. 220 Вольт. Ток возникает вследствие подключения приборов и прочего. Напряжение остаётся постоянным. (опять же в идеале, т.е. я не беру перегрузки и прочие причины падения напряжения)

А электросчетчик мотает что?

Работу тока. Т.е. мощность с электростанций, которую вся наша квартира потребила(если мы говорим о счётчиках в квартирах). Но для упрощения используют единицы — КилоВатт*Час. (скорее всего, упрощение сделано для сокращения цифры на счётчике, ведь, если бы работу замеряли в Ватт*Секунда, то число увеличивалось в 36000 раз, потому что в часе 3600 секунд, а приставка кило- равна тысяче Ватт) Т.е. если у вас целый час работал фен, потребляющий мощность, к примеру, 1000 Ватт (1 килоВатт) в час, то на счётчике будет 1 килоВатт*час. Если он работал два часа, на счётчике будет 2 килоВатт*час.

Но я придумал ещё! 😀

В чём разница между источником тока и источником напряжения?

В каких случаях какой источник нужно использовать?

Какими могут быть водные примеры двух типов источников?

Почему цепь должна быть замкнута?

Какой может быть пример электрической цепи через воду?

Источник

О природе электрического тока и основах электротехники

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)

1.1 Пара общих слов по физике вопроса
Электрический ток — это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы — это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален — заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья — это объяснение физики на пальцах! Подробнее искать по «электронная теория проводимости»).

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов — генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

рис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней — генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя — замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 — это клапан, открывающий\перекрывающий трубу, сопротивление R1 — это кран\вентиль который насколько-то приоткрыт. Этот крантель можно прикрыть — сопротивление увеличится, поток воды уменьшится. Можно открыть побольше — сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью — ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью — ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники — Закон Ома. ( «С красной строки. Подчеркни» (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R
Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде — если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще — говорят «падение напряжения на резисторе», потому что «производит» напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни — это делитель напряжения.
( «С красной строки. Подчеркни» (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология — сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).

Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай — учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

Источник

Читайте также:  Компании занимающиеся питьевой водой
Оцените статью