Тушение битума распыленной водой

Вещества и материалы, при тушении которых опасно применять воду и другие огнетушащие вещества на основе воды

Основным огнетушащим веществом в пожаротушении является вода. Она почти повсеместно доступна, дёшева и при этом весьма эффективна. При ее подаче в зону горения вода охлаждает наиболее нагретый слой вещества. При этом она частично испаряется и превращается в пар, благодаря чему происходит разбавление реагирующих веществ, что само по себе способствует прекращению горения, а также вытеснению воздуха из зоны очага пожара.

Вода в виде распыленных и тонкораспыленных (мелкодисперсных) струй обладает повышенной эффективностью при тушении пожара. Попадая в зону горения, она интенсивно испаряется, снижая концентрацию кислорода и разбавляя горючие пары и газы, участвующие в горении. Кроме того, мельчайшие капли воды, движущиеся с большой скоростью, хорошо проникают вглубь пористых матералов.

Наряду с этим у воды имеются и отрицательные свойства. Основной недостаток у воды как огнетушащего вещества заключается в том, что из-за высокого поверхностного натяжения она плохо смачивает твердые материалы и особенно волокнистые вещества. Для устранения этого недостатка к воде добавляют поверхностно-активные вещества (смачиватели, пенообразователь) для получения растворов, поверхностное натяжение которых меньше, чем у воды.

С некоторыми веществами и материалами (см. табл.) вода вступает в реакцию с выделением водорода, горючих газов, большого количества теплоты и др. Такие вещества водой тушить нельзя.

Таблица. Вещества и материалы, при тушении которых опасно применять воду и другие огнетушащие вещества на основе воды

Читайте также:  Расширяется ли монтажная пена под водой

Источник

Системы пожаротушения тонкораспылённой водой

Тушение очагов возгорания при помощи тонкораспылённой воды — наиболее эффективный способ при локализации пожаров классов А и В. В первом случае возгорания могут воспламеняться твёрдые вещества – древесина, пластические массы, текстильные изделия, резина. Во втором случае происходит неконтролируемое горение жидких веществ, имеющих свойства не растворяться в воде (нефтепродукты и бензин, парафины) и веществ, которые могут с ней смешиваться (например, спирты, глицерин, ацетон).

Популярность метода

Согласно статистике, 90 % всех случаев тушения пожаров происходит с применением воды. При всей популярности использования этого природного материала на практике существуют и отрицательные стороны такого средства тушения:

  • большой расход жидкости;
  • порча ценностей пожарогасительным материалом и затапливание объектов;
  • причинение серьёзного дополнительного ущерба соседним помещениям, не связанным с очагом возгорания, например затапливание квартир соседей;
  • необходимость организации дополнительных резервов хранения водного запаса с наличием пожарных резервуаров и насосных станций.

В значительно меньшей мере эти недостатки касаются способа тушения пожаров тонкораспылённой водой. Применение метода основывается на создании облака из мелкодисперсных капель воды, выдуваемого специальным агрегатом высокого давления свыше 250 бар.

Данный способ формально относится к поверхностному методу пожаротушения, однако следует принимать во внимание, что распыляемый реагент на практике охватывает объём площади горения с эффектом увеличения в несколько раз.

При этом под действием высокой температуры происходит парообразование, от этого затрудняется подача кислорода к очагу пожара, как следствие — резкое понижение температуры и сведение скорости горения к критической. Во избежание повторного загорания мелкодисперсный туман поддерживается в пространстве до 15 мин.

За счёт природного свойства воды — способности растворять большинство веществ — этот туман может вбирать в себя твёрдые частицы дыма, что значительно снижает риск сильного задымления окружающего пространства.

При таком способе для тушения пожаров класса А используют возможности жидкости, состоящей только из воды. В более катастрофических случаях вполне реально использование дополнительных пенообразующих добавок в смесь. Специальным переключателем клапан пожарного ствола агрегата переводится в положение для пенообразования, далее установка работает в штатном режиме.

Принцип действия установки

Единой конструкции аппарата высокого давления не существует, но принцип действия сводится к техническому решению процесса распыления реагента до состояния тумана. Диаметр капли распылённой воды для наиболее эффективного действия должен составлять 100–200 мкм.

Упрощённо схема установки пожаротушения тонкораспылённой водой имеет вид агрегата, составленного из отдельных узловых устройств и реагента пожаротушения.

Резервуар с водой соединён рукавом высокого давления с газовым баллоном, снабженным запорно-пусковым устройством. Зона защиты от пожара оснащена оросителями. При сигнале датчика возгорания устройство на баллоне срабатывает, открывая проникновение газа-вытеснителя через рукав в пожарную ёмкость. Образованная газо-жидкостная смесь по трубопроводу подаётся к оросителям.

Установки пожаротушения тонкораспыленной водой бывают двух типов:

  1. высокого давления. Снабжены баллонами с азотом или насосами высокого давления. Необходимая консистенция пожаротушительной смеси достигается механическим путём;
  2. низкого давления. Установка снабжена раздельным хранением пускового количества газа. В сформированную газо-жидкостную смесь дополнительно вводятся огнетушащие вещества.

Специалисты выделяют ряд зачастую повторяющихся ошибок при монтаже непрофессионалами установок тонкодисперсного распыления воды для пожаротушения. Во избежание дефектов функционирования системы в целом или усложнение её работы не следует:

  • устанавливать баллоны с газом недостаточного количества, требуемого площадью зоны защиты от пожара;
  • размещать ёмкости с раствором для пожаротушения на большом расстоянии от оросителей, а баллонов с газом на неоптимальном удалении от резервуара;
  • неэффективно разделять на секции зоны защиты от пожара;
  • размещать резервуары с водой на неоправданно низкой высоте.

Автономные установки пожаротушения имеет смысл использовать в одном помещении или в нескольких небольших по объёму и площади.

Помещения, имеющие площадь свыше 1000 кв.м. требуют зонирования пространства с рациональным размещением распределительных устройств и стационарного хранения газа-вытеснителя.

Достоинства и недостатки систем

Поскольку большее время установка пожаротушения тонкораспыленной водой находится в состоянии ожидания востребованности, существует тенденция зашлаковывания рабочих отверстий распылителей, имеющих диаметр 1,2 мм. В таком случае установка теряет свою работоспособность. В конструкции неплохо предусмотреть специальные закрывающие клапана для предотвращения зашлаковывания отверстия в соплах распылителя.

И, как минус, в части эксплуатационных достоинств системы пожаротушения тонкораспыленной водой, воспринимается необходимость устройства специальной системы водоподготовки.

К несомненным положительным эксплуатационным качествам систем можно отнести экономию вещества. При тушении водой обычными способами размер капли наблюдается от полутора до 2 мм. В таком формате эффективный расход воды составляет примерно 30 %. Остальная часть не борется с огнём, а выступает как излишки, наносящие дополнительный вред ценностям в зоне пожаротушения.

Эффективность локализации огня резко возрастает при уменьшении диаметра капли до 150 мкм. Маленький размер способствует увеличению охлаждающей способности, увеличивает проникновение и большую площадь покрытия зоны горения при расходе воды примерно 1,5 л на кв.м.

Потребность в большом количестве жидкости снижается, что уменьшает количество излишне пролитого реагента на спасаемые ценности, без сомнения оценится, к примеру, в библиотеках, музеях или архивах.

Кроме этих объектов, системы пожаротушения тонкораспыленной водой рекомендуется устанавливать на многоуровневых автомобильных парковках закрытого типа, в развлекательных, торговых и спортивных комплексах, кинотеатрах, выставочных павильонах, картинных галереях, гостиницах и в других объектах с массовым нахождением людей.

На эксплуатационные качества установок модульного типа не влияет количество источников возгорания и их расположение в зоне огня. Система достаточно проста в монтаже, не зависит от внешних источников энергоносителей.Дополнительным плюсом является нетоксичность реагентов системы пожаротушения ТРВ.

Источник

Мир водоснабжения и канализации

все для проектирования

Вода как огнетушащее средство

Вода является наиболее широко применяемым и эффективным средством тушения пожаров.

Таблица 1: Сравнение эффективности огнетушащих веществ (ОВ)

Класс пожара Горючие материалы Вода Пена Порошок СО2 Хладон CF3Br Другие хладоны
ПСБ ПФ
А Твердые вещества, образующие уголь (бумага, древесина, текстиль, каменный уголь и др. 4 4 1 3 1 2 1
В ГЖ и ЛВЖ (бензин, лаки, растворители), плавящиеся материалы (гидрон, парафин) 4 4 4 4 3 4 4
С Газы (пропан, метан, водород, ацетилен и др.) 2 1 4 3 1 3 2
D Металлы (Al, Mg и тд.) 1 1
E Электрооборудование (трансформаторы, распределительные щиты и др.) 2 2 2 3 4 3

Примечание: «1» — подходит, но не рекомендуется; «2» — подходит удовлетворительно; «3» — подходит хорошо; «4» — подходит отлично; «-» — не подходит.

Как следует из таблицы 1, вода и пена являются наиболее эффективными средствами тушения пожаров классов А и В (класа В в основном тонко- или ультрараспыленной водой).

Основу огнетушащего эффекта воды составляет ее охлаждающая способность, которая обусловлена большой теплоемкостью и теплотой парообразования.

Обладая самой высокой теплопоглощающей способностью, вода является наиболее эффективным природным материалом для тушения пожаров. Капли воды, попадая в очаг горения, проходят две стадии теплопоглощения: при нагреве до 100°С и испарении при постоянной температуре 100 °С. На первую стадию 1 литр воды тратит 335кДж энергии, на вторую фазу — испарение и превращение в водяной пар — 2260кДж.

Вода при проникновении в высокотемпературную зону или при попадании на горящее вещество частично испаряется и превращается в пар. При испарении объем воды увеличивается почти в 1670 раз, благодаря чему воздух вытесняется водяным паром из очага пожара, и , как следствие, зона горения обедняется кислородом.

Вода обладает высокой термической стойкостью. ее пары только при температуре выше 1700°С могут разлагаться на водород и кислород. В связи с этим тушение водой большинства твердых материалов безопасно, так как температура горения их не превышает 1300 °С.

Вода способна растворять некоторые пары, газы и поглощать аэрозоли. Поэтому ею можно осаждать продукты горения при пожарах в зданиях. Для этих целей применяют тонкораспыленные и ультрараспыленные (водный туман) струи.

Хорошая подвижность воды обеспечивает легкость ее транспортировки по трубопроводам. Воду используют не только для тушение очагов пожара, но и для охлаждения объектов, находящихся вблизи очага горения. Тем самым предотвращая их разрушение, взрыв и загорание.

Механизм тушение пожаров водой:

  • охлаждение поверхности и зоны реакции горящих веществ;
  • разбавления (флегматизации) окружающей среды в зоне горения паром, образующимся при испарении;
  • изоляции зоны горения от воздушной среды;
  • деформации реакционного слоя и срыва пламени за счет механического воздействия на пламя струи воды.

При тушении водой горящих нефтепродуктов в резервуарах существенное значение имеют капли, подаваемые на очаг горения. Оптимальный диаметр капель воды составляет 0.1мм при тушении бензина; 0.3 мм- керосина и спирта; 0.5мм — трансформаторного масла и нефтепродуктов с температурой вспышки выше 60 °С.

Высокая эффективность тушения горючих веществ, имеющих высокую температуру горения и создающих большой напор пламени, достигается благодаря использованию смеси мелких и крупных водяных капель. В этом случае мелкие капли, испаряясь в зоне пламенного горения, снижают ее температуру, а крупные капли, не успев полностью испариться, достигают горящей поверхности, охлаждают ее и, если их кинетическая энергия к моменту достижения горящей поверхности достаточно высока, разрушают установившийся в процессе горения реакционный слой.

Таблица 2: Область применения воды для различных классов пожара

Класс пожара Подкласс Горючие вещества и материалы (объекты) Вода, разбрызгиваемая оросителями Тонкорыспы-ленная вода Распыленная вода со смачивателем
А А1 Твердые тлеющие вещества, смачиваемые водой (дерево и т.п.) 3 3 3
А2 Твердые тлеющие вещества, не смачиваемые водой (хлопок, торф и т.п.) 1 1 2
А3 Твердые нетлеющие вещества (пластмассы и т.п.) 2 3 3
А4 Резинотехнические изделия 2 2 3
А5 Музеи, архивы, библиотеки и т.п. 1 1 1
В В1* Предельные и непредельные углеводороды (гептан и т.п.) 2 1
В2* Предельные и непредельные углеводороды (бензин и т.п.) 2 1
В3* Спирты водорастворимые (С1-С3) 2 1
В4* Спирты водонерастворимые (С4 и выше) 2 1
В5** Кислоты — ограниченно водорастворимые 3 3 3
В6** Эфиры простые и сложные (диэтиловый и т.п.) 3 3 3
В7** Альдегиды и кетоны (ацетон и т.п.) 3 3 3
С,

Д

С1,С2,С3

Д1,Д2,Д3,Д4

Е*** Е1 ЭВЦ 1 1 1
Е2 Телефонные узлы 2 2 2
Е3 Электроцентрали 1 1 1
Е4 Трансформаторные подстанции 2 2 2
Е5 Электроника 1 1 1

Примечание: «1» — подходит, но не рекомендуется; «2» — подходит удовлетворительно; «3» — подходит хорошо; «4» — подходит отлично; «-» — не подходит, «*» — для ЛВЖ и ГЖ с температурой вспышки до 90 °С; «**» — для ЛВЖ и ГЖ с температурой вспышки более 90 °С; «***» — электрооборудование под напряжением.

Воду нельзя применять для тушения следующих материалов:

  • калия, натрия, лития, магния, титана, циркония, урана, плутония;
  • алюминийорганических соединений (реагирует со взрывом);
  • литийорганических соединений, азида свинца, карбидов, щелочных металлов, гидридов ряда металлов, магния, цинка, карбидов кальция, бария (разложение с выделением горючих газов);
  • железа, фосфора, угля;
  • гидросульфита натрия (происходит самовозгорание);
  • серной кислоты, термитов, хлорида титана (сильный экзотермический эффект);
  • битума, перекиси натрия, жиров, масел, петролатума (усиление горения в результате выброса, разбрызгивания, вскипания).

Нефтепродукты и многие другие органические жидкости при тушении водой всплывают на ее поверхность, вследствие чего площадь пожара может значительно увеличиться. Например: в случае возгорание нефтепродуктов, расположенных в резервуаре, не рекомендуется тушить водой. Нефтепродукты сплывают над водой. Вода, в результате нагрева, переходит в пар. Водяной пар порциями поднимается вверх, что вызывает разбрызгивание горящих нефтепродуктов из резервуара и затрудняет доступ пожарных к очагу пожара.

К недостаткам воды относится высокая температура замерзания. Для понижения температуры замерзания применяют специальные добавки (антифризы), некоторые спирты (гликоли), минеральные соли (K2CO3, MgCl2, CaCl2). Однако указанные соли повышают коррозионную способность воды, поэтому их практически не используют. Применение же гликолей существенно повышает стоимость огнетушащего вещества.

Пенообразователи, антифризы и другие добавки также повышают коррозионную способность и электропроводность воды. В качестве защиты от коррозии, можно на металлические детали и трубопроводы нанести специальные покрытия, либо добавить к воде ингибиторы коррозии.

Расширение области применения воды для тушения электротехнического оборудования под напряжением возможно при использовании ее в тонко- и ультрараспыленном состоянии.

Невысокая смачивающая способность и малая вязкость воды затрудняют тушение волокнистых, пылевидных и особенно тлеющих материалов. Тлению подвержены материалы с большой удельной поверхностью, в порах которых содержится воздух, необходимый для горения. Такие материалы могут гореть при сильно сниженном содержании кислорода в окружающей среде. Проникновение огнетущащих средств в поры тлеющих материалов, как правило, довольно затруднительно.

При введение смачивателя (сульфоната) расход воды на тушение снижается в четыре раза, а время тушения — в два раза.

В ряде случаев тушение водой становится весьма эффективным, если ее загустить с помощью, например, натриевой соли карбоксиметилцеллюлозы или альгината натрия. Повышение вязкости до 1-1,5 Н*с/м 2 позволяет сокатить время тушение примерно в 5 раз. Наилучшими добавками в этом случае являются растворы альгината натрия и натрийкарбоксиметилцеллюлозы. Например, 0.05%-й раствор натрийкарбоксиметилцеллюлозы обеспечивает существенное сокращение расхода воды на пожаротушение. Если при определенных условиях тушения обычной водой ее расход составляет от 40 до 400 л/м 2 , топри использовании «Вязкой» воды — от 5 до 85л/м 2 . Средний ущерб от пожара (в том числе в результате воздействия воды на материалы) снижается при этом на 20%.

Наиболее часто используются следующие добавки, повышающие эффективность применения воды:

  • водорастворимые полимеры для повышения адгезии к горящему объекты («Вязкая вода»);
  • полиоксиэтилен для повышения пропускной способности трубопроводов («скользкая вода»);
  • неорганические соли для повышения эффективности тушения;
  • антифризы и соли для уменьшения температуры замерзания воды.

В настоящее время одним из наиболее перспективных направлений в области противопожарной защиты объектоа различного назначения является использование в качестве средства тушения пожаров тонко- и ультрараспыленной воды. В таком виде вода способна поглощать аэрозоли, осаждать продукты горения и тушить не только горящие твердые вещества, но и многие горючие жидкости.

При подаче воды в тонко- или ультрараспыленном состоянии достигается наибольший огнетушащий эффект. Особенно актуально применение тонко- и ультрараспыленной воды на объектах, где требуется высокая эффективность тушения, имеются ограничения по водоснабжению и актуальна минимизация ущерба от проливов воды.

С помощью тонко- и ультрараспыленной воды может быть обеспечена защита многих особо социально и промышленно значимых объектов. К их числу относятся: жилые помещения, гостиничные номера, офисы, образовательные учреждения, общежития, административные здания, банки, библиотеки, больницы, компьютерные центры, музеи и выставочные галереи, спорткомплексы промышленные объекты, т.е. такие объекты, на которых тушение пожаров необходимо осуществлять в начальной стадии достаточно быстро и с малым расходом воды.

Дополнительные преимущества использование распыленной воды по сравнению с компактной струей или разбрызгиваемым потоком:

  • возможность тушения практически всех веществ и материалов за исключением веществ, реагирующих с водой с выделением тепловой энергии и горючих газов;
  • высокая эффективность тушения, обусловленная повышенным охлаждающим эффектом и равномерным орошением водой очага пожара;
  • минимальное потребление воды — незначительный расход позволяет избежать существенного ущерба от последствий пролива и обеспечить возможность использования при условии лимита воды;
  • экранирование лучистого теплового излучения — использование для защиты обслуживающего персонала, принимающего участие в тушении пожара, личного состава подразделений пожарной охраны, несущих и ограждающих конструкций, а также рядом расположенных материальных ценностей;
  • разбавление горючих паров и снижение концентрации кислорода в зоне горения в результате интенсивного образования водяного пара;
  • снижение температуры в помещениях при пожаре в них;
  • равномерное охлаждение чрезмерно разогретых металлических поверхностей несущих конструкций за счет высокой удельной поверхности капель — исключает их локальную деформацию, потерю устойчивости и разрушение;
  • эффективное поглощение и удаление токсичных газов и дыма (дымоосаждение);
  • низкая электрическая проводимость тонко- ультрараспыленной воды — обеспечивает возможность ее применения в качестве эффективного средства пожаротушения на электроустановках, находящихся под напряжением;
  • экологическая чистота и токсикологическая безопасность в сочетании с защитой людей от воздействия опасных факторов пожара — позволяет персоналу спасать ценность во время работы автоматической установки пожаротушения.

Ультрараспыленная вода в зоне горения интенсивно испаряется. Защитный слой водяного пара может изолировать зону горения, препятствуя доступу кислорода. Когда концентрация кислорода в очаге горения снизится до 16-18%, огонь самозатухает.

Используемая литература: Л.М.Мешман, В.А.Былинкин, Р.Ю.Губин, Е.Ю.Романова. Автоматические водяные и пенные установки пожаротушения. Проектирование. г.Москва. — 2009г.

Источник

Оцените статью