Уравнение формальдегида с водой

Химические свойства альдегидов и кетонов

Карбонильные соединения – это органические вещества, молекулы которых содержат карбонильную группу:

Карбонильные соединения делятся на альдегиды и кетоны. Общая формула карбонильных соединений: СnH2nO.

Альдегидами называются органические соединения, содержащие карбонильную группу, в которой атом углерода связан с радикалом и одним атомом водорода.

Структурная формула альдегидов:

Кетонами называются соединения, в молекуле которых карбонильная группа связана с двумя углеводородными радикалами .

Структурная формула кетонов:

Химические свойства альдегидов и кетонов

1. Реакции присоединения

В молекулах карбонильных соединений присутствует двойная связь С=О, поэтому для карбонильных соединений характерны реакции присоединения по двойной связи. Присоединение к альдегидам протекает легче, чем к кетонам.

1.1. Гидрирование

Альдегиды при взаимодействии с водородом в присутствии катализатора (например, металлического никеля) образуют первичные спирты, кетоны — вторичные:

1.2. Присоединение воды

При гидратации формальдегида образуется малоустойчивое вещество, называемое гидрат. Оно существует только при низкой температуре.

1.3. Присоединение спиртов

При присоединении спиртов к альдегидам образуются вещества, которые называются полуацетали.

В качестве катализаторов процесса используют кислоты или основания.

Полуацетали существует только при низкой температуре.

Полуацетали это соединения, в которых атом углерода связан с гидроксильной и алкоксильной (-OR) группами.

Полуацеталь может взаимодействовать с еще одной молекулой спирта в присутствии кислоты. При этом происходит замещение полуацетального гидроксила на алкоксильную группу OR’ и образованию ацеталя:

1.4. Присоединение циановодородной (синильной) кислоты

Карбонильные соединения присоединяют синильную кислоту HCN. При этом образуется гидроксинитрил (циангидрин):

2. Окисление альдегидов и кетонов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

При окислении альдегиды превращаются в карбоновые кислоты.

Альдегид → карбоновая кислота

Метаналь окисляется сначала в муравьиную кислоту, затем в углекислый газ:

Формальдегид→ муравьиная кислота→ углекислый газ

Вторичные спирты окисляются в кетоны:

в торичные спирты → кетоны

Типичные окислители — гидроксид меди (II), перманганат калия KMnO4, K2Cr2O7, аммиачный раствор оксида серебра (I).

Кетоны окисляются только при действии сильных окислителей и нагревании.

2.1. Окисление гидроксидом меди (II)

Происходит при нагревании альдегидов со свежеосажденным гидроксидом меди, при этом образуется красно-кирпичный осадок оксида меди (I) Cu2O. Это — одна из качественных реакций на альдегиды.

Например, муравьиный альдегид окисляется гидроксидом меди (II)

HCHO + 2Cu(OH)2 = 2Cu + CO2 + 3H2O

Чаще в этой реакции образуется оксид меди (I):

2.2. Окисление аммиачным раствором оксида серебра

Альдегиды окисляются аммиачным раствором оксида серебра (реакция «серебряного зеркала»).

Поскольку раствор содержит избыток аммиака, продуктом окисления альдегида будет соль аммония карбоновой кислоты.

Например, при окислении муравьиного альдегида аммиачным раствором оксида серебра (I) образуется карбонат аммония

Например, при окислении уксусного альдегида аммиачным раствором оксида серебра образуется ацетат аммония

Образование осадка серебра при взаимодействии с аммиачным раствором оксида серебра — качественная реакция на альдегиды.

Упрощенный вариант реакции:

2.3. Жесткое окисление

При окислении под действием перманганатов или соединений хрома (VI) альдегиды окисляются до карбоновых кислот или до солей карбоновых кислот (в нейтральной среде). Муравьиный альдегид окисляется до углекислого газа или до солей угольной кислоты (в нейтральной среде).

Например, при окислении уксусного альдегида перманганатом калия в серной кислоте образуется уксусная кислота

Кетоны окисляются только в очень жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов.

Реакция протекает с разрывом С–С-связей (соседних с карбонильной группой) и с образованием смеси карбоновых кислот с меньшей молекулярной массой или СО2.

Карбонильное соединение/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метаналь СН2О CO2 K2CO3
Альдегид R-СНО R-COOH R-COOK
Кетон R-COOH/ СО2 R-COOK/ K2СО3

2.4. Горение карбонильных соединений

При горении карбонильных соединений образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метаналя:

3. Замещение водорода у атома углерода, соседнего с карбонильной группой

Карбонильные соединения вступают в реакцию с галогенами, в результате которой получается хлорзамещенный (у ближайшего к карбонильной группе атома углерода) альдегид или кетон.

Например, при хлорировании уксусного альдегида образуется хлорпроизводное этаналя

Полученное из ацетальдегида вещество называется хлораль. Продукт присоединения воды к хлоралю (хлоральгидрат) устойчив и используется как лекарство.

4. Конденсация с фенолами

Формальдегид может взаимодействовать с фенолом. Катализатором процесса выступают кислоты или основания:

Дальнейшее взаимодействие с другими молекулами формальдегида и фенола приводит к образованию фенолоформальдегидных смол и воды:

Фенол и формальдегид вступают в реакцию поликонденсации.

Поликонденсация — это процесс соединения молекул в длинную цепь (полимер) с образованием побочных продуктов с низкой молекулярной массой (вода или др.).

5. Полимеризация альдегидов

Полимеризация характерна в основном для легких альдегидов. Для альдегидов характерна линейная и циклическая полимеризация.

Например, в растворе формалина (40 %-ного водного раствора формальдегида) образуется белый осадок полимера формальдегида, который называется полиформальдегид или параформ:

Источник

Муравьиный альдегид, формальдегид, или метаналь

Муравьиный альдегид СН2О, газообразное вещество весьма острого запаха, получается обыкновенно пропусканием смеси паров метилового спирта с воздухом через раскаленную спираль из медной или серебряной сетки. Образовавшийся муравьиный альдегид поглощают водой. Водный раствор его (обыкновенно 40%-ный) продается под названием формалина.

Технология контактно-каталитического процесса окисления метилового спирта воздухом была впервые изучена и осуществлена русским химиком Е. И. Орловым.

Формальдегид образуется также при неполном окислении многих органических веществ, начиная от метана. Поэтому перспективен метод его промышленного получения из природного газа прямым окислением. Имеются также сведения о получении формальдегида этим путем из пропана и бутана газов нефтепереработки.

Своеобразное поведение водных растворов формальдегида при перегонке (с водяными парами улетучивается очень мало

СН2О), а также отсутствие в спектрах поглощения и спектрах комбинационного рассеяния частот, характерных для карбонильной группы, свидетельствует о том, что формальдегид в растворах находится в виде гидратов. В частности, он может находиться в виде метиленгликоля

или гидратов полимеров (димера, тримера, вплоть до октамера), имеющих следующее строение:

При упаривании водных растворов формальдегида происходит дальнейшее уплотнение полиоксиметиленов и образуется твердый продукт, называемый параформальдегидом. А. М. Бутлеров, впервые получивший это вещество, назвал его триоксиметиленом, полагая, что это индивидуальное вещество состава (СН2О)3. Впоследствии было показано, что параформальдегид на самом деле является смесью полиоксиметиленов, содержащих от 8 до 100 оксиметиленовых звеньев. При нагревании, особенно в присутствии кислот, параформальдегид частично деполимеризуется в газообразный формальдегид. Очень чистый сухой газообразный формальдегид довольно стоек, но присутствие даже следов воды вызывает его полимеризацию с образованием полиоксиметиленов.

В неионных растворителях, например в гептане, сухой газообразный формальдегид в присутствии катализаторов (третичные амины, металлалкилы и др.) образует твердые полиоксиметилены, в которых число звеньев составляет уже от нескольких сот до нескольких тысяч. Эти полимеры применяются как очень ценные пластмассы (полиформальдегиды).

Существуют также циклические полимеры формальдегида:

При действии аммиака на формалин или параформальдегид образуется не альдегидаммиак, а кристаллическое гигроскопическое вещество состава (СН2)6N4, названное А. М. Бутлеровым гексаметилентетрамином; строение его, как доказано изучением рентгенограмм, следующее:

Гексаметилентетрамин потребляется промышленностью пластических масс (в производстве феноло-формальдегидных смол). Он применяется в медицине под названием уротропина как противоподагрическое средство и с различными добавками как профилактическое и лечебное средство (например, кальцекс) при гриппозных заболеваниях. Интересно применение спрессованного уротропина в качестве бездымного твердого горючего — так называемого «твердого спирта».

Со спиртами в присутствии следов кислоты формальдегид легко дает соответствующие ацетали, например:

Ацеталь метилового спирта, так называемый метилаль, или диметилформаль, СН2(ОСН3)2 представляет собой жидкость с эфирным запахом, не смешивающуюся с водой (т. кип. 41,5°С, относительная плотность 0,862 при 18° С); этилаль, или диэтилформаль, СН2(ОС2Н5)2 кипит при 87° С и имеет относительную плотность 0,834 при 20° С.

В присутствии щелочей в водном растворе может идти и другая реакция: формальдегид конденсируется, причем в числе прочих продуктов получается один из простейших сахаров, или гексоз:

Здесь происходит конденсация шести молекул формальдегида по типу альдольной конденсации, причем она, вероятно, проходит через ряд последовательных фаз

Формальдегид с бисульфитом натрия образует формальдегид-бисульфит CH2(OH)SO3Na · H2O. При кипячении раствора этого соединения с цинковой пылью образуются в различных условиях два продукта, которые обладают сильными восстановительными свойствами и находят значительное применение при лабораторных работах и в технике. В присутствии щелочи образуется вещество состава СН2О · NaHSO2 · 2H2O, названное ронгалитом. Ронгалит представляет собой соединение формальдегида с кислой натриевой солью неизвестной в свободном виде сульфоксиловой кислоты H2SO,

для которого может быть принято название формальдегид-сульфоксилат натрия Его можно рассматривать также как соль ронгалитовой кислоты НО—СН2—SO2H.

Второе вещество, образующееся в отсутствие щелочи, имеет состав 2СН2О · Na2S2O4 · 4H2O и носит название гидросульфита. По-видимому, оно представляет собой соединение формальдегид-бисульфита с ронгалитом.

Формальдегид в виде формалина или параформальдегида находит большое техническое применение для многочисленных синтезов. Многие из них используются и в технике. Большое разнообразие синтезов на основе формальдегида объясняется тем, что, помимо обычных реакций окисления, восстановления и замещения, этот альдегид очень легко конденсируется с органическими соединениями разных классов, имеющими достаточно подвижный водородный атом. Ниже приводятся наиболее типичные примеры.

Высшие алифатические альдегиды дают в этих условиях окси-или диоксиальдегиды (в зависимости от числа α-водородных атомов):

Эти реакции проходят, по-видимому, в несколько стадий, которые для случая получения пентаэритрита могут быть изображены следующим образом:

С кетонами формальдегид реагирует аналогично, но имеются и важные отличия. Главными из них является то, что реакцию можно обрывать на промежуточных стадиях, аналогичных приведенным выше, и получать монометилолкетоны и диметилолкетоны с метилольными группами при одном и том же углеродном атоме. Другим важным отличием является образование циклических внутренних эфиров. Так, при взаимодействии с ацетоном, вместо ожидаемого гексаметилолизопропилового спирта, получается соединение

При взаимодействии формальдегида с солями жирных кислот получаются высшие альдегиды:

Ангидриды карбоновых кислот образуют с формальдегидом сложные эфиры метиленгликоля и диметиленгликоля, например:

Реакция с хлорангидридами кислот напоминает реакцию с метанолом в присутствии НCl и приводит к образованию хлорметилового эфира соответствующей кислоты.

К олефинам в присутствии сильных кислот формальдегид присоединяется в виде метиленгликоля, образуя 1,3-гликоли, например:

С ацетиленом реакция идет с сохранением тройной связи и приводит к пропаргиловому спирту и бутиндиолу-1,4.

Нитропарафины взаимодействуют с формальдегидом совершенно так же, как и альдегиды.

Формальдегид является одним из важнейших исходных веществ для производства пластических масс. Особенно большое значение имеют полимеры, получаемые конденсацией формальдегида с фенолами и аминосоединениями (мочевина, меламин); изделия из них широко применяются в электротехнике, радиотехнике, машиностроении, авто- и авиапромышленности и в быту. Полимеры, получаемые конденсацией формальдегида с различными фенолами, носят общее название феноло-формальдегидных смол или фенопластов, а полимеры, получаемые конденсацией его с мочевиной, меламином и др., называют карбамидными смолами или аминопластами. К аминопластам причисляют также галалиты — продукты конденсации формальдегида с казеином.

Формальдегид применяется также для дубления кожи, для консервирования анатомических препаратов и пр. Такое применение основано на способности формальдегида давать с белковыми веществами эластичную массу, трудно проницаемую для воды.

Источник

Читайте также:  Почему сверху водонагревателя бежит вода
Оцените статью