Ванадий взаимодействие с водой

I .4. Химические свойства ванадия

На воздухе ванадий не изменяется, устойчив он к во­де, к растворам минеральных солей и щелочей. Кислоты на него действуют только такие, которые одновременно являются окислителями. На холоде на него не действу­ют разбавленные азотная и серная кислоты. По-видимо­му, на поверхности металла образуется тончайшая плен­ка оксида, препятствующая дальнейшему окислению металла («пассивированное состояние»). Для того что­бы заставить пассивированный ванадий интенсивно реа­гировать, его нужно нагреть. При 600—700°С происхо­дит интенсивное окисление компактного металла, а в мелкораздробленном состоянии он вступает в реакции при более низкой температуре:

2V +5O2 2V2O5 2VO2 + O2;

2V +5F 2VF5;

2V +2Cl2 в токе хлора t VCl4

Прямым взаимодействием элементов при нагрева­нии могут быть получены сульфиды, карбиды, нитриды, арсениды, силициды. Для техники важны желто-бронзо­вый нитрид VN (tпл = 2050°С), устойчивый к воде и кислотам, а также обладающий высокой твердостью карбид VC (tпл = 2800 °С).

Ванадий очень чувствителен к примесям газов (O2, N2, H2), которые резко меняют его свойства, даже если присутствуют в самых незначительных количествам. Поэтому и сейчас можно в разных справочниках встре­тить различную температуру плавления ванадия. За­грязненный ванадий, в зависимости от чистоты и спосо­ба получения металла, может плавиться в интервале от 1700 до 1900°С. При чистоте 99,8 — 99,9 % его плот­ность равна 6,11 г /см 3 при 20°С, температура плавле­ния составляет 1919°С, а температура кипения 3400 °С.

Металл исключительно стоек как в органических, так и в большинстве неорганических агрессивных средах. По стойкости к действию НС1, НВr и холодной серной кислоты он значительно превосходит титан и нержавею­щую сталь. С галогенами, за исключением самого агрес­сивного из них — фтора, соединений не образует. С фто­ром же дает кристаллы VF5, бесцветные, возгоняющиеся без превращения в жидкость при 111°С. Атмосфера из углекислого газа на металлический ванадий действует значительно слабее, чем на его аналоги — ниобий и тан­тал. Он обладает высокой стойкостью к расплавленным металлам, поэтому может применяться в конструкциях атомных реакторов, где расплавленные металлы исполь­зуются как теплоносители. Ванадий не ржавеет ни в пресной, ни в морской воде, ни в растворах щелочей. Действуют на него лишь расплавленные щелочи:

Читайте также:  Рак это какая вода

Из кислот на него действуют концентрированная сер­ная и азотная кислоты, плавиковая и их смеси:

Особенностью ванадия считается высокая раствори­мость в нем водорода. В результате такого взаимодейст­вия образуются твердые растворы и гидриды. Наиболее вероятная форма существования гидридов — металлооб­разные соединения с электронной проводимостью. Они способны довольно легко переходить в состояние сверх­проводимости. Гидриды ванадия могут с некоторыми твердыми или жидкими металлами образовывать рас­творы, в которых повышается растворимость водорода.

Самостоятельный интерес представляют карбиды ва­надия, так как по своим качествам дают для современной техники материал с весьма ценными свойствами. Они ис­ключительно тверды, тугоплавки и обладают хорошей электрической проводимостью. Ванадий способен для образования своих карбидов даже вытеснить другие ме­таллы из их карбидов:

Известен целый ряд соединений ванадия с углеродом:

С большинством членов главной подгруппы ванадий дает соединения как бинарные (т. е. состоящие только из двух элементов.), так и более сложного состава. Нит­риды образуются при взаимодействии порошка металла или его оксидов с газообразным аммиаком:

Для, полупроводниковой техники интерес представляют фосфиды V3Р, V2P, VP, VP2 и арсениды V3As, VAs.

Комплексообразующие свойства ванадия проявляются в об­разовании соединений сложного состава типа фосфорно-ванадиевой кислоты H7PV12O36 или Н7[Р(V2O6)6].

I .5. Оксиды ванадия

В системе ванадий — кислород взаимодействие начи­нается при нагревании до температуры примерно 300°С. Получено большое количество оксидов ванадия, харак­тер которых постепенно меняется при переходе от низших оксидов к высшим. Относительно недавно обна­ружен низший оксид V2О. Он нестоек и по своему харак­теру близок к металлическому состоянию. Его светло-се­рые кристаллы отливают металлическим блеском, хоро­шо проводят электрический ток.

Оксид VO более стоек, нерастворим в воде, но раство­ряется в разбавленных кислотах с образованием двух­зарядного катиона V 2+ .

Водные растворы ванадия в такой степени окисления ок­рашены в фиолетовый, или в бледно-голубой цвет. Ра­створы солей иона V 2+ неустойчивы и настолько сильные как восстановители, что при стоянии выделяют водород прямо из воды, а ион ванадия переходит в более устой­чивые высшие степени окисления. При добавлении к ра­створам любого даже слабого основания образуется бу­рый аморфный осадок V(OH)2. В чистом виде, однако, выделить его нельзя, так как на воздухе он быстро пре­вращается в серо-зеленый гидроксид V(ОН)3.

Из особенностей оксида можно отметить существование при определенных концентрациях ванадия димера V2О2, а также совершенно особое влияние температуры на его состояние. Оксиды обычно делаются нестойкими при вы­соких температурах и разлагаются. Здесь же наблюда­ется совершенно удивительное свойство: оксид VO ус­тойчив лишь при высокой температуре. Даже при мед­ленном и постепенном охлаждении он разлагается и пе­реходит в высшие оксиды.

Оксид ванадия, соответствующий степени окисления +3, имеет амфотерный характер с преобладанием ос­новных свойств. Как кислотные качества можно рассматривать образование им с оксидами MgO, MnO, СаО двойных соединений, а с Fe2О3, Сr2О3, Аs2О3 непрерыв­ный ряд твердых растворов. С оксидами же щелочных металлов Li2О и Na2О получаются соли LiVO3, NаVОз, которые можно считать ванадиевыми солями.

Внешне V2O3 — блестящие черные кристаллы (tпл = 1970°С), по структуре подобны корунду, в воде, ра­створах щелочей и кислотах не растворяются, кроме пла­виковой и азотной (быстрее всего в кипящей):

Водные растворы таких солей окрашены в зеленый цвет. Из них добавлением аммиака можно осадить рыхлый се­ро-зеленый осадок, который считается гидроксидом ва­надия в степени окисления +3. Отметим, что такое состояние менее устойчиво и менее характерно для вана­дия, чем +4 и +5. Поэтому соединения ванадия со степенью окисления +3 стремятся перейти в более ста­бильное состояние и проявляют, следовательно, свойства восстановителей.

Сине-голубые кристаллы VO2 на воздухе теряют свою форму, так как вещество гигроскопично. Это наиболее устойчивый оксид ванадия, поэтому его можно получить либо окислением низших оксидов:

либо восстановлением высшего:

Оксид VO2 амфотерен и одинаково легко растворяется как в основаниях:

так и в кислотах:

Водный его раствор не изменяет цвета ни синей, ни крас­ной лакмусовой бумажек, т. е. его амфотерность распре­делена поровну между кислотными качествами и основ­ными. Водные растворы солей содержат ванадий не в виде простого катиона, а в виде иона ванадила, имеюще­го две формы существования: VO 2+ — и V2O2 4+ — и придаю­щего синий цвет растворам.

В щелочах образуются соли поливанадиевых кислот H4V4O9 или H2V2O5, называются соли ванадитами или поливанадатами. При величине рН = 4 из растворов со­лей можно осадить серовато-бурый аморфный гидроксид VO(OH)2. Если щелочность увеличить, при рН от 8 до 10 гидроксид (в соответствии со своими амфотерными каче­ствами) будет растворяться, превращаясь в соли. При сплавлении этого оксида ванадия с оксидами щелочнозе­мельных металлов получаются ванадаты:

Могут образовываться три ряда ванадатов СаVО3, Са2VO4, Ca3VO5 со сложной структурой.

Наиболее важным и интересным, с точки зрения хи­мика, считается высший оксид ванадия V2O5, который может иметь вид красных или красно-желтых кристал­лов либо оранжевого порошка. Получается он по реак­ции ванадия с кислородом. При 600—700°С взаимодейст­вие идет очень быстро, так как образующийся оксид V2О5 расплавляется (tпл = 675°С) и скатывается с поверхности металлического ванадия. Лабораторный способ его получения — из метаванадата аммония;

Высший оксид ванадия имеет ярко выраженный кис­лотный характер и при растворении в воде образует ва­надиевую кислоту:

Форма существования ванадия в растворе кислоты — в виде катиона VO 2+ , цвет раствора желтовато-оранже­вый. При растворении оксида ванадия (V) в основаниях получаются соли изомерных ванадиевых кислот, напоми­нающих фосфаты:

По форме они соответствуют мета — [НVO3], орто — [Н3VO4]и H2V2O7 пированадиевым кислотам. В этом отношении ванадий обнаруживает сходство уже не с азотом, а с фосфором.

Особенность ванадия (в степени окисления +5) при растворении в сильных кислотах — образовывать комп­лексные соединения, содержащие до девяти -двенадца­ти атомов ванадия на молекулу. Другим замечательным свойством оксида можно считать способность в расплав­ленном состоянии проводить электрический ток, скорее всего вследствие диссоциации на ионы:

V2O5 VO 2+ + VO 3-

А ведь пропускание электрического тока считается без­условной «привилегией» металлов. По этому свойству распознается принадлежность вещества к металлам или неметаллам.

Характер гидратных форм оксидов ванадия меняется закономерно с изменением степени его окисления. В со­стоянии наибольшего окисления он образует кислоты, по­добные кислотам фосфора и мышьяка, элементов, кото­рые являются соседями ванадия, но относятся к противо­положной подгруппе. Слово «противоположная» означа­ет, что элементы различных подгрупп одной группы — химические антиподы: для одних должны быть более характерны свойства металлов, а для других — неме­таллов. Но при сравнении членов обеих подгрупп мож­но заметить, что «противоположности» сближаются. У элементов побочной подгруппы все более усиливаются свойства неметаллов, характерные для главной подгруп­пы, и наоборот.

Ванадий в этом отношении служит примером. В выс­шей окислительной степени у него преобладают свойст­ва неметалла. При состоянии окисления +4 его гидро­ксид в одинаковой мере проявляет. Свойства обеих про­тивоположностей, т. е. он амфотерен.

Сопоставив приведенные данные об оксидах ванадия с аналогичными сведениями о подобных соединениях других членов V группы, можно прийти к следующему выводу: по количеству оксидов и по числу состояний окисления ванадий далеко превосходит не только членов побочной подгруппы (это естественно), но и некоторые элементы главной подгруппы. Если судить по кислород­ным соединениям (именно их особенности несколько де­сятилетий назад считались основным признаком сходст­ва и различия), то ванадий должен считаться более близким «родственником» азота, чем висмут, сурьма и даже мышьяк. Ведь эти элементы не образуют всех ти­пов оксидов, присущих азоту, а существующие у них по своим свойствам подобны оксидам фосфора.

Источник

Ванадий взаимодействие с водой

Ванадий отличается высокой химической стойкостью, при нормальных условиях инертен.

    Взаимодействие с неметаллами

При температуре выше 600 °С взаимодействует с кислородом, образуя оксид ванадия (V):

при горении ванадия на воздухе образуется оксид ванадия (IV):

При температуре выше 700°С реагирует с азотом с образованием нитрида:

При нагревании до 200–300 °С реагирует с галогенами. С фтором образует фторид ванадия (V), с хлором – хлорид ванадия (IV), с бромом – бромид ванадия (III), с йодом – йодид ванадия (II):

С углеродом при 800 °С образует карбид:

При спекании с бором и кремнием при высоких температурах образует борид и силицид:

Реагирует с серой и фосфором при нагревании:

2V + 3S = V2S3, возможно образование VS и VS2,

V + P = VP, возможно образование VP2.

С водородом образует твердые растворы.

Взаимодействие с кислотами

Ванадий находится в ряду напряжений металлов до водорода, но, благодаря своей прочной защитной пленке, довольно инертен, не растворяется в воде и разбавленной соляной кислоте, на холоду не реагирует с разбавленной серной и азотной кислотой.

Реагирует с плавиковой кислотой с образованием фторидного комплекса:

с концентрированной азотной кислотой с образованием соединения ванадия (V) – нитрата ванадина:

с концентрированной серной кислотой с образованием соединения ванадия (IV) – сульфата ванадила:

и царской водкой с образованием соединения ванадия (V) – хлорида ванадина:

растворяется в смеси азотной и плавиковой кислот:

плавиковая кислота растворяет пассивирующую пленку оксида:

а азотная кислота окисляет поверхность металла:

Взаимодействие со щелочами

Ванадий не взаимодействует с растворами щелочей, в расплавах в присутствии воздуха окисляется с образованием ванадатов:

С металлами образует сплавы и интерметаллиды.

Источник

Ванадий взаимодействие с водой

Цель: повторить и обобщить сведения о свойствах, способах получения и применении ванадия и его соединений.

Оборудование: Периодическая система химических элементов Д.И. Менделеева (приведена в электронном учебном пособии).

Содержание урока соответствует части IV.9 электронного учебного пособия.

Знакомство с химией ванадия и его соединений следует начать с исторической справки. Ванадий был открыт в 1830 г . шведским химиком и минералогом Н. Сефстремом в железной руде из Таберга (Швеция). В чистом виде выделен в 1869 г . английским химиком Г. Роско при взаимодействии водорода и хлористого ванадия.

Охарактеризовать положение ванадия в Периодической системе химических элементов Д.И. Менделеева. Ванадий расположен в 5 группе Периодической системы химических элементов Д.И. Менделеева. Ванадий – d-элемент. Валентные электроны атома ванадия имеют электронную конфигурацию 3d 3 4s 2 . В соединениях ванадий проявляет степени окисления +2, +3, +4, +5. Соединения ванадия (II) проявляют преимущественно основные свойства, ванадия (III) и (IV) – амфотерные, соединения ванадия (V) – кислотные.

Остановиться на распространенности ванадия в земной коре: ванадий – довольно распространенный элемент, но его минералы не встречаются в виде крупных месторождений, ванадий относится к рассеянным элементам. Ванадий встречается в нефти, битумах, углях, содержится в морской воде и осадочных породах.

При изучении физических свойств ванадия отметить, что ванадий – серебристо-белый металл, пластичен, при нагревании на воздухе выше 300 °С становится хрупким, примеси кислорода, водорода и азота резко снижают пластичность ванадия, придают ему твердость и хрупкость. На воздухе покрывается прочной оксидной пленкой.

При изучении химических свойств ванадия обратить внимание, что ванадий отличается высокой химической стойкостью, при нормальных условиях инертен. При нагревании взаимодействует со многими неметаллами: кислородом, азотом, галогенами, углеродом, бором, кремнием, серой и фосфором. Обратить внимание на образующиеся продукты и степень окисления ванадия в соединениях. Ванадий находится в ряду напряжений металлов до водорода, но, благодаря своей прочной защитной пленке, довольно инертен, не растворяется в воде и разбавленной соляной кислоте, на холоду не реагирует с разбавленной серной и азотной кислотой. Реагирует с плавиковой кислотой с образованием фторида ванадия, с концентрированной азотной кислотой с образованием соединения ванадия (V) – нитрата ванадина, с концентрированной серной кислотой с образованием соединения ванадия (IV) – сульфата ванадила, с царской водкой с образованием соединения ванадия (V) – хлорида ванадина, растворяется в смеси азотной и плавиковой кислот с образованием гептафторованадата (V) водорода. Ванадий не взаимодействует с растворами щелочей, в расплавах в присутствии воздуха окисляется с образованием ванадатов. Необходимо обратить особое внимание на характер образующихся продуктов.

Рассмотреть способы получения ванадия методами металлотермии и электролизом расплава солей ванадия.

Познакомить учащихся с соединениями ванадия в различных степенях окисления. Из соединений ванадия (II) рассмотреть свойства оксида, гидроксида и солей ванадия (II). Обратить внимание, что они проявляет основные свойства, с водой и щелочами не взаимодействует, реагирует с кислотами. Соединения ванадия (II) – сильные восстановители, уже на воздухе растворы солей окисляются с образованием соединений ванадия (III).

Из соединений ванадия (III) рассмотреть свойства оксида, гидроксида и солей ванадия (III). Основными формами существования ванадия (III) являются V 3+ , VO + , VO3 3- , комплексные ионы, в которых ванадий имеет координационное число, равное 6. Соединения ванадия (III) проявляют амфотерные свойства с преобладанием основных, являются сильными восстановителями, в растворах окисляются кислородом воздуха до производных ванадия (IV).

Из соединений ванадия (IV) рассмотреть свойства оксида, гидроксида и солей ванадия (IV). При обычных условиях степень окисления +4 является для ванадия наиболее характерной. Ванадий (IV) существует в следующих формах: VO 2+ (ванадин-ион), VO3 2- , V4O9 2- (ванадат (IV)-ионы). В комплексных ионах имеет координационное число, равное 6, а также 4 и 5. Соединения ванадия (IV) проявляют амфотерные свойства, с преобладанием кислотных, в зависимости от условий могут быть окислителями и восстановителями.

Из соединений ванадия (V) рассмотреть свойства оксида и солей ванадия (V) – изополиванадатов. Степень окисления +5 для ванадия реализуется в оксокатионах VO2 + , VO 3+ (ванадил-ионы) и оксоанионах VO4 3- , V2O7 4- , V3O9 3- и др. (ванадат (V)-ионы). Соединения ванадия (V) проявляют кислотные свойства. Обратить внимание на формы существования ванадат-ионов в растворе в зависимости от рН и концентрации раствора.

Сделать вывод об изменении кислотно-основных и окислительно-восстановительных свойств соединений ванадия в ряду V (II) – V (III) – V (IV) – V (V). В указанном ряду кислотно-основные свойства изменяются от основных (V (II)) через амфотерные (V (III) и V (IV)) до кислотных (V (V)), а окислительно-восстановительные – от восстановительных (V (II)) до окислительных (V (V)).

Рассмотреть основные области применения ванадия и его соединений.

Источник

Оцените статью