Влияние водных организмов воду

Влияние водных организмов на качество природных вод

Качество воды в водоемах во многом зависит от фильтрующих животных. Многие из них ведут сидячий образ жизни или “парят” в толще воды, отцеживая из окружающей среды пищевые частицы. Многочисленные пластинчатожаберные моллюски, такие, как устрицы и мидии в морях, а в пресных водах – перловицы, беззубки, дрейссены, ресничками на ротовых лопастях подгоняют воду к ротовому отверстию и сортируют взвесь. При этом частицы, непригодные в пищу, формируются в комочки и осаждаются на дно. Мелкие рачки, такие, как дафнии, отцеживают пищевую взвесь густыми щеточками щетинок на своих конечностях. Личинки мошек в ручьях отфильтровывают пищу пучками щетинок на голове, а личинки комаров – щетками на верхней губе. Активно процеживают воду через жаберный аппарат некоторые рыбы, как, например, толстолобик и китовая акула.

Рис. 3. Ветвистоусые рачки

Фильтрационное питание наблюдается у 40 тысяч видов водных животных. В результате этой деятельности происходит биологическое самоочищение водоемов, и от него зависит качество воды. Одна перловица длиной 5–6 см при температуре 20 °С очищает до 16 л воды в сутки. В прудах и озерах, где много мелких рачков, весь объем воды пропускается через их фильтровальный аппарат всего за один день (рис. 3). Один квадратный метр морского мелководья, густо заселенный моллюсками мидиями, за сутки может очистить до 280 м 3 воды. Таким образом, чистота и прозрачность природных вод – результат деятельности живых организмов.

Читайте также:  Почему нагревается спирт при разбавлении водой

Способность организмов изменять среду обитания широко используется в хозяйственной практике. Для улучшения микроклимата, условий увлажнения и защиты полей от иссушающих ветров в степных районах сажают лесополосы, для очистки воздуха в городах и курортных зонах создают парки и сады. На водоочистительных станциях строят специальные емкости, где поддерживается высокая активность мелких фильтраторов. Используя почвообразующую деятельность животных и микроорганизмов, предприятия по переработке органических отходов производят удобрения для внесения в истощенные почвы.

Условия жизни людей на Земле зависят от средообразующей роли миллиардов живых организмов. И состав воздуха, и качество вод, и почвенное плодородие, и микроклимат складываются из их суммарной деятельности.

Источник

Влияние водных организмов на качество природных вод.

Качество воды в водоемах во многом зависит от фильтрующих животных. Многочисленные моллюски, такие, как устрицы и мидии в морях, дрейссены и беззубки в пресных водах ресничками на ротовых лопастях подгоняют воду к ротовому отверстию и сортируют взвесь. Мелкие рачки, такие, как дафнии, отцеживают пищевую взвесь густыми щеточками щетинок на своих конечностях. Активно процеживают воду через жаберный аппарат некоторые рыбы, например, китовая акула.

Фильтрационное питание наблюдается у 40.000 видов водных животных. В результате этой деятельности происходит биологическое самоочищение водоемов, и от него зависит качество воды.

Теперь мы можем сделать вывод, что условия жизни людей на Земле зависят от средообразующей роли миллиардов живых организмов. И состав воздуха, и качество вод, и почвенное плодородие, и микроклимат складывается из их суммарной деятельности.

1. Этап пополнения экологических сведений о взаимодействии растений и животных с окружающей средой. Продолжительность: древность — конец XVIII в. Личности: Аристотель – отец зоологии, Теофраст – отец ботаники, Плиний-старший «Естественная история», «Рамаяна», «Махабхарата» (описал 50 видов живых существ) (II-I в до н.э.). 2. Этап формировании экологических направлений в рамках ботанической и экологической географии. Продолжительность: конец XVIII (эпоха Возрождения) – середина XIX вв. Личности: А. Гумбольдт. 3. Этап формирования экологии растений и животных, как наук адаптации организмов к среде обитания. Продолжительность: середина XIX в. – 20-е гг. XX в. Личности: Уоллес, Мебиус, Дарвин, Варминг, Бонниер, Форбе. 4. Этап становления экологии общебиологической наукой, являющейся теоретической базой охраны природы. Продолжительность: 20-е – 60-е гг. XX в. Личности: Зюсс, Чандлер, Кровер, Вернадский, Вольтерра, Лоттки, Гаузе. 5. Этап развития глобальной экологии с выделением в её рамках антропоэкологии. Продолжительность: 60-е гг. XX в – наши дни. Личности: А. Тенсли «Экосистема».

Источник

Влияние воды на организм человека

Важная роль воды заключается в том, что она является основным элементом в поддержании жизни человека, т.е. непременная составляющая часть всего живого. Только там, где есть вода, есть жизнь. Вода — необыкновенный, уникальный минерал! Это единственный минерал, который бывает в твердом, жидком и газообразном состоянии. Вода — один из лучших энергоинформационных носителей. Организм человека состоит по весу на 50-86% из воды (86% у новорожденного и до 50% у пожилых людей). По данным ВОЗ — 85% всех заболеваний в мире передается с водой.

Вода в организме человека помогает преобразовать пищу в энергию, помогает организму усваивать питательные вещества, увлажняет кислород для дыхания, регулирует температуру тела, участвует в обмене веществ, защищает жизненно важные органы, смазывает суставы, выводит различные отходы из организма. С гигиенической точки зрения один литр питьевой воды не должен содержать более 0.5 грамма солей. В основном это гидрокарбонаты, сульфаты или хлориды натрия, магния и кальция. Большое значение в определении качества воды для человека, имеют химические элементы, содержащиеся в ней в ничтожно малых концентрациях, но, тем не менее, играющие важную роль во многих физиологических функциях.

Это так называемые микроэлементы, например, йод, бром, фтор. Их содержание в литре воды выражается миллиграммами, но дозировка должна быть очень точной. Так, если в литре воды содержится менее 0,5 миллиграмма фтора, то это вызывает кариес зубов, а концентрация, фтора в 1,0-1,5 миллиграмма на литр может стать причиной флюороза зубов.

Однако и другая крайность — отсутствие солей — ухудшает вкусовые и гигиенические свойства воды. Полностью лишенная солей вода (дистиллированная) воспринимается как безвкусная и неприятная. Физиологически же такая вода просто вредна для человека, так как понижает осмотическое давление внутри клеток. Вода необходима для очищения сосудов, суставов, всех органов и систем.

В сутки человек теряет 1,5 — 2 литра воды. Значит, столько же ему надо выпить воды. Чтобы насыщать наш организм водой, необходимо постоянно пить воду. По данным медицинских экспериментов человек начинает испытывать жажду, когда количество воды в его теле уменьшается на 1-2% (0,5- 1,0л). Без пищи человек может прожить около 50-ти дней, если во время голодовки он будет пить пресную воду. Без воды он не проживет и неделю — смерть наступит через 5 дней. Правильный питьевой режим — это сохранение физиологического водного баланса, т.е. выделение и поступление воды должно быть равнозначным.

Приблизительно 40% ежедневной потребности организма в воде удовлетворяется с пищей, остальное мы должны принимать в виде различных напитков. Если организм получает достаточное количество воды, то человек становится более энергичным и выносливым. При этом нельзя ориентироваться на то, испытываете вы жажду или нет, поскольку этот рефлекс возникает уже поздно и не является адекватным показателем того, сколько воды нужно вашему организму. Симптомами обезвоживания организма являются: сухая кожа (может сопровождаться зудом), усталость, плохая концентрация внимания, головные боли, повышение давления, плохая работа почек, сухой кашель, боли в спине и суставах. Норма 30 мл на 1 кг веса.

Чай, кофе, искусственные напитки, пиво — не способны удовлетворить потребность организма в натуральной воде. Соблюдение питьевого режима для организма — это употребление достаточного количества воды.

Потребление достаточного количества воды — это один из лучших способов сохранить свое здоровье.

(c) Федеральное бюджетное учреждение здравоохранения «Центр гигиены и эпидемиологии в Рязанской области», 2006-2021 г.

Адрес: 390046, Рязанская область, город Рязань, ул. Свободы, дом 89

Тел.: +7 (4912) 25-58-02

Соц. сети:

Источник

Воздействие воды на живые организмы

Возможность существования жизни на Земле возникла благодаря уникальной роли воды как универсального растворителя; вода достаточно хорошо растворяет как органические, так и неорганические вещества, что обеспечивает высокую скорость протекания биохимических реакций внутри живых организмов и химических реакций в окружающей среде. Уникальные свойства позволили воде играть в клетке роль не только растворителя, но и терморегулятора, а также поддерживать структуру клеток и осуществлять транспортировку веществ и т. д. У наземных животных содержание воды в организме составляет от 45 до 95%.

Роль воды в клеточных процессах

Вода участвует в реакции фотосинтеза – главного процесса, создавшего на Земле органическое вещество. В ходе фотосинтеза водород из состава воды входит в структуру органических веществ, а свободный кислород выделяется в атмосферу. Вода участвует в гидролизе – разрушении органических веществ с присоединением воды. Например, гидролиз жиров, белков и углеводов происходит при переваривании пищи, а при гидролизе АТФ (аденозинтрифосфат – вещество в ядре клетки, играющее исключительно важную роль в обмене энергии и веществ в организмах) выделяется энергия, обеспечивающая жизнедеятельность клеток

В жидком состоянии вода практически не сжимаема и поэтому служит гидростатическим скелетом клетки. За счёт осмоса вода создаёт избыточное давление внутри растительных клеток, обеспечивающее упругость клеточной стенки и поддержание её формы. У растений благодаря капиллярному эффекту, характерному для воды, осуществляется подъём по сосудам от корня к другим частям растворённых в воде минеральных солей. Выведение, перемещение продуктов обмена веществ в растворённом виде у животных также происходит благодаря свойствам воды.

Роль воды в терморегуляции

Вследствие своей большой теплоёмкости вода обеспечивает примерное постоянство температуры внутри клетки. Вода может переносить большое количество теплоты, отдавая её там, где температура тканей ниже, и забирая там, где температура более высокая. Также при испарении воды происходит значительное охлаждение из-за того, вода обладает высокой удельной теплотой испарения, на которое расходуется много энергии.

Вода – единственное вещество на Земле (кроме ртути), для которого зависимость удельной теплоёмкости от температуры имеет минимум около +37°С. Вследствие этого нормальная температура большинства теплокровных животных находится в диапазоне температур 32–39°С.

Вода как абиотический фактор

Абиотические факторы – это все свойства неживой природы, которые прямо или косвенно влияют на живые организмы.

Наземные животные окружены воздухом, содержание воды в котором ниже, чем в их собственном теле; поэтому все они обычно теряют воду путём испарения, а также при выведении с водой конечных продуктов метаболизма. Дефицит влаги – одна из существенных особенностей наземно-воздушной среды. Вся эволюция наземных организмов происходила в условиях приспособления к добыванию и сохранению влаги.

Режимы влажности воздуха на суше очень разнообразны, велика также суточная и сезонная изменчивость содержания водяных паров в атмосфере. Режим выпадения осадков, наличие водоёмов, запасов почвенной влаги и т. п. – всё это привело к развитию у наземных организмов способности адаптироваться к различным режимам водообеспечения.

По отношению к воде (влажности) выделяют ряд экологических групп растений: гидатофиты (водные растения, целиком или почти целиком погруженные в воду); гидрофиты (наземно-водные растения, частично погруженные в воду); гигрофиты (наземные растения, живущие в условиях повышенной влажности воздуха); мезофиты (растения, живущие в условиях среднего увлажнения) и ксерофиты (растения, произрастающие в местах с недостаточным увлажнением).

Среди основных механизмов адаптаций растений к водному фактору можно выделить следующие: уменьшение потери воды (толстая восковая кутикула, опушённые листья, листья превращены в колючки или иглы, погруженные устьица, сбрасывание листьев); увеличение поглощения воды (длинные корни, обширная корневая система); запасание воды; переживание неблагоприятного периода (в виде семян, луковиц или клубней).

Животные получают воду при потреблении жидкости и сочной пищи и в результате метаболизма (окисление и расщепление жиров, белков и углеводов). Удаление (потери) воды происходит путём испарения также через покровы или со слизистых оболочек дыхательных путей, а также путем выведения с продуктами метаболизма. Величина испарения воды зависит от влажности воздуха. Многие животные могут совершенно обходиться без питьевой воды, получая влагу другими способами. К этой группе относятся, например, многие пустынные животные: антилопы, суслики, тушканчики, черепахи, различные насекомые – воду они получают, поедая зелёные растения.

По отношению к влаге также выделяют несколько экологических групп животных: гигрофилы (влаголюбивые виды); ксерофилы (сухолюбивые виды); мезофилы (виды, занимающие промежуточное положение).

Регулирование водного баланса осуществляется поведенческими, морфологическими и физиологическими адаптациями. В условиях недостатка влаги большое значение у животных имеет использование метаболической воды, образующейся в результате окисления жиров и некоторых других веществ. Экономия воды при выведении продуктов метаболизма достигается всасыванием как можно большего её количества в пищеварительной и выделительной системах (в зависимости от условий среды). Испарение воды (потоотделение через потовые железы или через слизистую), связанное с терморегуляцией, также обеспечивает регулирование водного обмена, но может быть причиной истощения водных ресурсов организма.

Биосфера обладает самым незначительным суммарным объёмом из всех видов воды, включенных в мировой водный запас. Биологическая вода содержится в тканях растений, животных, микроорганизмов, однако водообмен в биосфере происходит наиболее интенсивно, на порядки быстрее, чем в окружающей организмы среде.

Разнообразие организмов в водах. Бактериальные сообщества

В водной среде обитают около 150 тыс. видов животных (примерно около 7% общего количества на Земле) и 10 тыс. видов растений (8%). Следовательно, вода как среда жизни не отличается видовым разнообразием. Однако бо́льшая часть невидимых нам организмов: бактерии, микроводоросли и грибы не может обитать в среде без значительного количества воды. Наибольшем разнообразием бактерий характеризуются почвы. Учитывая, что почвы тесно связаны с поверхностными и поземными водами, разнообразие бактериальных сообществ в водоёмах всегда сравнимо с разнообразием бактериальных сообществ почв. В последнее время, когда растёт загрязнение природных вод, разнообразие бактериальных, грибных, микроводорослевых сообществ в природных водоёмах напрямую связано с процессами самоочищения вод. Именно эти невидимые глазу организмы осуществляют очистку воды от самых опасных загрязняющих веществ, включая ксенобиотики (вещества, в определённых концентрациях токсичные для живых организмов).

Токсичность, биоиндикация, биотестирование

Под токсичностью понимают способность веществ вызывать нарушения физиологических функций организма, что в свою очередь приводит к нарушению метаболизма или, в тяжелых случаях, к гибели. Степень токсичности веществ принято характеризовать величиной токсической дозы – количеством вещества (отнесённым, как правило, к единице массы животного или человека), вызывающим определенный токсический эффект. Чем меньше токсическая доза, тем выше токсичность вещества. Различают средне смертельные (ЛД50), абсолютно смертельные (ЛД100), минимально смертельные (ЛД0-10) и другие дозы. Цифры в индексе отражают вероятность (%) летального исхода в группе подопытных организмов.

Существуют два принципиально разных направления изучения загрязнённости природных вод по их действию на живые организмы: биоиндикация и биотестирование. Биоиндикация – оценка качества воды по живущим в ней организмам (видовому составу, разнообразию, численности), биотестирование – оценка качества воды по реакции организма (организмов) в стандартизованных условиях лабораторного опыта (поведенческие реакции, выживаемость, плодовитость, продукция).

Биоиндикация осуществляется на различных уровнях организации биосферы: макромолекулы, клетки, органа, организма, популяции, биоценоза. Поиск обобщённых показателей оценки состояния природных объектов является одной из ведущих современных проблем. Однако к настоящему времени отсутствует единая, достаточно полная и сбалансированная комплексная методика оценки качества воды. На основе гидробиологических индексов созданы многие классификации качества вод.

В последние десятилетия для оценки состояния водных объектов всё шире применяется биотестирование.

Биотестирование представляет собой методический приём оценки качества окружающей среды по реакциям или характеристикам подопытных организмов с известными и поддающимися учёту характеристиками. Для целей биотестирования применяются биологические системы любого уровня сложности (биохимическая система, выделенный элемент клеточной структуры или орган, функциональные или структурные элементы целого организма, выборки, популяции и сообщества организмов). Показателем токсического действия служат степень изменения какого-либо из параметров, определенного биохимическими или биофизическими методами.

При проведении опытов по биотестированию необходимо иметь в виду, что отсутствие проявлений какого-либо эффекта токсичности при испытаниях проб не свидетельствует, однако, об отсутствии потенциально токсичных компонентов в их составе. В высокосапробных (содержащих большие концентрации органических веществ) водах присутствие токсикологически нейтральных органических соединений приводит к связыванию потенциальных токсикантов, например, тяжёлых металлов. В результате происходит известная в экотоксикологии «маскировка» токсичности. Это явление можно рассматривать в качестве врéменного благоприятного эффекта от смешения стоков разной химической природы. Однако не исключено, что может произойти разложение связывающих компонентов, что повысит биодоступность токсикантов с соответствующими биологическими и экологическими последствиями.

Влияние воды на биоценозы

Водные организмы, реагируя на поступление загрязняющих веществ извне, способны перестраивать свои биоценозы таким образом, чтобы снять эту нагрузку и привести качество воды в исходное состояние. Этот процесс, называемый самоочищением водных объектов, наблюдается повсеместно. Однако загрязнение не должно превышать некоего критического уровня, после достижения которого экосистема переходит в угнетённое состояние и частично или полностью утрачивает способность обеспечивать самоочищение водного объекта. Процессы, происходящие в природных системах, активно используются человеком в очистных сооружениях с блоками биологической очистки.

Время перестройки водных биоценозов может изменяться от суток (и даже часов) до десятилетий. Наиболее мобильной частью водных экосистем являются бактериальные сообщества, которые в течение часов могут изменить свою продукцию и видовую структуру, приспосабливаясь к новым условиям.

Так, загрязнение органическим веществом водного объекта приводит к уменьшению видового разнообразия гидробионтов, к возрастанию роли консументов 1-го порядка, среди которых преобладают глотатели и собиратели детрита, и снижению роли консументов 2-го порядка (хищного зообентоса). В целом, органическое загрязнение приводит к преобладанию детритных пищевых цепей, резкому увеличению скорости деструкции органического вещества, значительному отклонению её от равновесного состояния.

Изменения в структуре биоценозов в связи со сменой нагрузки могут происходить в течение различных периодов времени. Они происходят по разным причинам – как естественным (ураганы, бурные паводки, пожары в бассейне реки), так и антропогенным (загрязнение, подкисление водной среды и т.п.). Изменение всегда направлено на утилизацию поступившего «излишка» органики или на трансформацию органического токсиканта до соединений, безвредных для гидробионтов. При снижении действия дополнительного фактора нагрузки структура биоценозов может возвращаться к прежнему состоянию или стать стабильной, но качественно иной.

Источник

Оцените статью