Вода это составная часть почвы

Состав почвы

Почва – это сложная динамическая система. Она состоит из минеральных и органических веществ. Минеральные компоненты поступают в почву, в первую очередь, из материнской породы , на которой она образовалась. Органические вещества появляются и развиваются благодаря живым организмам, населяющим почвенный покров. Взаимодействие минералов и органики создает сложный комплекс разных соединений.

В этом разделе мы расскажем, из чего состоит почва. Вы узнаете о ее фазах и их особенностях. Также вы прочитаете о минеральном и органическом составах покрова, их соотношении и характеристиках.

Фазы почвы

Прежде всего мы поговорим о фазах почвы.

Выделяют четыре основных части:

Все они взаимосвязаны и активно влияют друг на друга.

К твердой фазе относятся органические и минеральные вещества. Это частицы разного размера и формы, которые неплотно примыкают друг к другу (глыбы, обломочные породы, глина, песок, пыль и другие). Тем не менее, они создают твердый почвенный каркас, на котором размещаются другие части. Эта фаза определяет петрографический (гранулометрический) состав, структуру, сложение и пористость почвенного покрова.

Сама по себе тве р дая часть является малодинамичной системой. Она же самая объемная – занимает 45-60% покрова. С ней связаны многие физические, физико-химические и химические свойства материала.

Подробнее об этом читайте на нашей странице Твердая фаза почвы.

Жидкая часть – это вода и растворенные в ней соли. Данная фаза формируется из атмосферных осадков, грунтовых вод, конденсации водяных паров. Она составляет около 25% от всего объема почвенного покрова.

Эта фаза считается самой динамичной. Именно из нее растения усваивают питательные вещества. Ведь без достаточного количества влаги нормальное развитие флоры и почвенных микроорганизмов невозможно. Кроме того, жидкая фаза участвует в таких процессах как гумификация и минерализация органических остатков, выветривание, перемещение веществ внутри покрова и формирование почвенного профиля.

Вода является и терморегулирующим фактором. Она определяет расход тепла из почвы и растений вследствие испарения и транспирации. С влажностью покрова тесно связаны его физико-механические свойства (твердость , крошение, липкость и другие). Стоит отметить, что передвижение влаги в почве и по ее поверхности также влияет и на отрицательно сказывающиеся на плодородии процессы. Среди них эрозия и вынос из верхних слоев питательных элементов.

Подробнее об этом читайте на нашей странице Жидкая фаза почвы.

Газообразная часть – это почвенный воздух. Он занимает все поры в почве, не занятые водой.

Эта фаза, как и жидкая, является динамической. Она покрывает 20-25% от общего объема почвы. В отличие от атмосферного воздуха, почвенный беден на кислород. В нем много углекислот. Это объясняется деятельностью микроорганизмов и растений: чем их больше в почве, тем больше кислорода они потребляют и углекислого газа выделяют.

Также в составе почвенного воздуха постоянно присутствуют нелетучие органические соединения (углеводороды жирного и ароматического рядов, сложные альдегиды, спирты и другие). Они , пусть и в небольшом количестве, тоже образуются в процессе жизнедеятельности почвенных микроорганизмов. Эти вещества поглощаются корнями, способствуя росту растений и повышению их жизнедеятельности.

Подробнее об этом читайте на нашей странице Газообразная фаза почвы.

Все фазы взаимодействуют друг с другом, активно переходят из одной в другую. Это возможно благодаря деятельности живых организмов. Они являются четвертой, живой фазой почвенного покрова. К ней относятся растения, грибы, бактерии, простейшие, мелкие животные. Высокая активность этих организмов доказывает, что все естественные процессы, которые происходят в почве, прямо или косвенно являются биохимическими по своей природе.

Подробнее об этом читайте на нашей странице Живая фаза почвы.

Примерное соотношение всех фаз почвы показано на диаграмме ниже.

Следующее, о чем мы поговорим, – это химический состав почвенного покрова. Он представлен минеральными и органическими веществами. Они сконцентрированы в твердой и жидкой фазах. В синтезе химических соединений принимают активное участие живые организмы.

Минеральный состав почвы

Минеральные вещества составляют 80-90% от общего объема покрова. Они поступают в почву двумя путями – из материнской породы и при полном разложении живых организмов. Из горной по р оды в почву попадают первичные минералы. Они имеют кристаллическое строение и практически не усваиваются растениями. Вторичные минералы аморфные, способны набухать и задерживать воду. Именно они являются источником питательных элементов почвы.

В составе почвы содержатся практически все известные химические элементы. Процентное содержание основных вы найдете в таблице ниже (средние значения).

Основные химические элементы почвы Процентное содержание (от общего числа всех химических элементов)
Кислород (O) 49%
Кремний (Si) 33%
Алюминий (Al) 7,13%
Железо (Fe) 3,8%
Углерод (C) 2%
Кальций (Ca) 1,37%
Калий (K) 1,36%
Натрий (Na) 0,63%
Магний (Mg) 0,6%

Кроме того, около 1-3% составляют фосфор, марганец, хлор, азот, сера и микроэлементы (кобальт, фтор, йод, медь, цинк, молибден). Все элементы входят в состав оксидов, гидроксидов, растворимых и нерастворимых солей. Для роста и развития флоры наибольшее значение имеют калий, фосфор, азот, в меньшей мере – кальций и магний. Но в небольших количествах растениям требуются и другие элементы.

Первоисточником всех минералов в почве являются магматические породы. Они составляют 95% от общей толщи литосферы. На долю осадочных пород приходятся оставшиеся 5%. Метаморфические же причисляются к тем материалам , из которых они образовались. Поэтому здесь они в расчет не принимаются.

Подробно о влиянии горных пород на почву и процессы формирования почвенного покрова вы сможете узнать в нашей статье Почвообразующая порода как фактор почвообразования.

Химический состав почв находится в состоянии постоянного изменения. Это связано с непрерывностью процессов выветривания и почвообразования.

Органический состав почвы

Органические вещества составляют от 1-2% до 10-15% почвы. Они образуются при частичном разложении растений, животных и микроорганизмов. В состав почвы входят белки, углеводы, смолы, воски, лигнин, липиды и продукты их распада (спирты, аминокислоты, пептиды, моносахариды). Эти вещества составляют около 10% от всей органики, являются источником минералов и питательной средой для почвенной фауны, бактерий, грибов.

Скорость разложения растительных остатков зависит от содержащихся в них веществ. Так, древесина и хвоя содержат много лигнина, смол и дубильных веществ, но мало белков. Их разложение идет медленно. Остатки же бобовых трав, богатые белками, разлагаются быстро.

Основную часть почвенной органики (80-90%) составляют гуминовые вещества. Они и определяют плодородие грунта.

В группу входят:

  • Гуминовые кислоты
    Это вещества темного цвета. Они образуют нерастворимые соли с железом и алюминием. Гуминовые кислоты способны поглощать и задерживать в верхних слоях почвы воду и питательные элементы , затем постепенно их высвобождать. Они участвуют в превращении химических соединений в доступную для растений форму. Эти кислоты играют главную роль в формировании структуры почвы и ее плодородия.
  • Фульвокислоты
    Это растворимые вещества желтого цвета. Они быстро вымываются в нижние горизонты, плохо задерживают влагу и минералы, подкисляют почву.
  • Гумины
    Это инертные вещества, связывающие минералы. Они не участвуют в почвообразовании.

Помимо соединений, органические остатки всегда содержат некоторый объем зольных элементов. Их количество и состав варьируются в зависимости от вида организмов и условий среды их обитания. В состав золы входят калий, кальций, магний, кремний, фосфор, сера, железо и многие другие элементы, содержащиеся в незначительных количествах. Очень низкая зольность характерна для древесины. Большое количество зольных элементов содержат остатки травянистой растительности.

Знание минерального и органического состава почвы и ее фаз помогает лучше разобраться в свойствах материала, его применении. Отсюда также становится понятно, какими способами можно улучшить плодородие почвенного покрова. Об этом мы у же писали в нашей статье Плодородность почвы: как ее сохранить и повысить. Возможно вам также будет полезна наша статья о кислотности почв. В ней подробно рассказано, как можно регулировать такой показатель как кислотность почвенного покрова, делать почву более кислой или щелочной.

Источник

Вода это составная часть почвы

Глава 7. ВОДНЫЕ СВОЙСТВА И ВОДНЫЙ РЕЖИМ ПОЧВ

§1. Значение воды в почве

Почва как многофазная система способна поглощать и удерживать воду. В ней всегда находится определенное количество влаги. Вода поступает в почву в виде атмосферных осадков, грунтовых вод, при конденсации водяных паров из атмосферы, при орошении.

Почвенная вода является жизненной основой растений, почвенной фауны и микрофлоры, получающих воду главным образом из почвы. От содержания воды в почве зависят интенсивность протекающих в ней биологических, химических и физико-химических процессов, передвижение веществ и формирование почвенного профиля, водно-воздушный, питательный и тепловой режимы, ее физико-механические свойства, то есть, важнейшие показатели почвенного плодородия. Следовательно, почвенная вода оказывает прямое и косвенное влияние на развитие и урожайность растений.

Растения расходуют воду в огромном количестве. Для создания 1 г сухого органического вещества потребляется от 200 до 1000 г воды. Количество воды, затрачиваемое на создание единицы сухого вещества за вегетационный период, называется транcnupaцuoнным коэффициентом. Однако растениями усваивается только часть почвенной влаги, которая удерживается силами, меньшими, чем сосущая сила корней, – продуктивная влага. В процессе фотосинтеза вода вместе с углекислым газом – первичный источник образования органического вещества растений. В воде растворяются питательные вещества, которые с почвенным раствором поступают в растения. Растения нормально развиваются только при постоянном и достаточном количестве влаги в почве. Недостаток, как и избыток, влаги в почве ограничивает продуктивность растений. В этом случае неэффективными становятся различные приемы, направленные на повышение урожаев сельскохозяйственных культур (внесение удобрений, известкование и др.).

Водообеспеченность растений определяется не только количеством поступающей воды в почву, но и ее водными свойствами, способностью почвы впитывать, фильтровать, удерживать, сохранять воду и отдавать ее растению по мере потребления. В одинаковых климатических условиях при равной влажности почвы могут содержать разное количество доступной воды, что зависит от механического состава почв, структурного состояния, содержания гумуса и других показателей, предопределяющих их водные свойства. Поэтому создание благоприятного водного режима в почве – одно из важнейших условий получения высоких и устойчивых урожаев сельскохозяйственных культур в условиях интенсивного земледелия.

§2. Формы воды в почве

Для определения обеспеченности растений доступной водой необходимо знать формы и взаимосвязи воды в почве.

Вода в почве может находиться во всех трех состояниях: в парообразном, твердом и жидком. Парообразная вода содержится в почвенном воздухе и поступает из атмосферы, а также образуется в почве при испарении жидкой воды и льда, свободно передвигается в почве из более влажных мест в менее увлажненные (при условии одной и той же температуры во всех горизонтах почвы), а из горизонтов с большей температурой — в участки с меньшей температурой. Практическое значение парообразной почвенной влаги в земледелии ничтожно, однако в почвах засушливых районов за счет водяного пара в зимнее время в метровом слое аккумулируется до 10 –14 мм влаги. Твердая вода непосредственно не используются растениями, хотя и может служить резервом доступной влаги (жидкой и газообразной).

Жидкая и парообразная вода в почве подвергается воздействию различных природных сил: гравитационных, молекулярного притяжения твердой фазы почвы и силы притяжения между молекулами воды. В зависимости от преобладания одной из этих сил почвенная вода имеет различную подвижность и доступность для растений.

Выделяют следующие основные формы почвенной воды, различающиеся между собой прочностью связи с твердой фазой почвы и степенью подвижности: кристаллизационную, гигроскопическую, пленочную, капиллярную, гравитационную.

Кристаллизационная вода – это химически связанная вода, входящая в состав минералов либо в виде гидроксильных групп (Fе(ОН)з, А1(ОН)з, Са(ОН)2), либо в виде целых молекул (например, гипса (CaS04 * 2 Н20), мирабилита (Na24 * 10 Н2О) и др.); выделяется при нагревании почвы до температуры 400 – 600 °С. Химически связанная влага не принимает непосредственного участия в физических процессах, протекающих в почве, и растениям недоступна.

Гигроскопическая влага. Часть воды, находящейся в воздухе в виде пара, поглощается поверхностью почвенных частиц, образуя гигроскопическую влагу – одну из форм так называемой сорбционной воды, т.е. удерживаемой силами сорбции. Содержание этой влаги зависит от: относительной влажности и температуры воздуха (чем влажнее воздух и ниже температура, тем ее больше в почве), содержания органического вещества (чем богаче почва гумусовыми веществами, тем ее больше) и механического состава (при прочих равных условиях почва суглинистая или глинистая всегда будет содержать больше гигроскопической влаги, чем почва песчаная или супесчаная). Наибольшее количество гигроскопической воды, поглощенное почвой и выраженное в процентах от массы сухой почвы, называется максимальной гигроскопичностью (МГ). Такое количество влаги почва может поглотить из воздуха, имеющего относительную влажность, близкую к 100 %. Максимальная гигроскопическая влажность – величина, постоянная для каждой почвы, так как она определяется при постоянных температуре и относительной влажности воздуха. Может колебаться для песчаных почв от 0,1 до 1,5 в глинистых, гумусированных – до 10 – 15, в органогенных – до 20 – 40 % от веса сухой почвы. Молекулы гигроскопической воды удерживаются на поверхности почвенных частиц с большой силой, поэтому удалить их можно лишь продолжительным нагреванием почвы при 105 °С. Следовательно, для растений гигроскопическая влага недоступна.

МГ используют для выяснения мертвого запаса влаги (МЗВ) в почве – количество влаги в почве, при котором растения начинают устойчиво завядать, так как эта вода не может быть использована растениями. Он равен 1,5 • МГ, т.е. в состав мертвого запаса влаги входит еще пленочная вода.

Пленочная вода покрывает почвенные частицы следующим за гигроскопической влагой слоем, также удерживается силами межмолекулярного притяжения, но слабее, поэтому является частично доступной (для взрослых растений). Кристаллизационная, гигроскопическая и пленочная формы воды относятся к прочносвязанной воде и составляют МЗВ.

Влага, которая содержится в почве сверх мертвого запаса, называется продуктивной. Благодаря этой влаге формируется урожай сельскохозяйственных растений.

Свободная вода не связана силами притяжения с почвенными частицами, доступна растениям, передвигается в почве под действием капиллярных и гравитационных сил. В связи с этим выделяют капиллярную и гравитационную воду.

Капиллярная вода заполняет тонкие (капиллярные) поры почвы и передвигается в них под влиянием капиллярных (менисковых) сил. Высота подъема воды тем выше, чем тоньше капилляр. В зависимости от характера увлажнения различают капиллярно- подвешенную и капиллярно-подпертую воду. При увлажнении почвы сверху (атмосферные осадки, оросительные воды) формируется капиллярно-подвешенная вода, не связанная с грунтовыми водами и находящаяся в верхней части профиля почв. Капиллярно-подпертая формируется при увлажнении снизу и поднимается от зеркала грунтовых вод. Почвенный слой, в котором она распространяется, называется капиллярной каймой, и мощность его зависит от водоподъемной способности почвы. Капиллярная вода легкодоступна для растений и является основным источником их водного питания. Разновидностью капиллярной воды является стыковая влага, находящаяся в почвах с атмосферным увлажнением, которая представляет собой влагу, удерживаемую между частицами почвы и не проходящую вниз.

Если почву, в которой все капиллярные поры уже заполнены водой, продолжать увлажнять, то влагой будут заполняться некапиллярные промежутки. Эта влага, свободно передвигающаяся в почве и подчиненная в своем движении силе тяжести, называется гравитационной. Гравитационная влага может передвигаться в почве только из верхних слоев вниз. Просачиваясь вниз, она либо является источником питания грунтовых вод, либо распределяется по толще почвы и переходит в другие формы воды. Гравитационная влага легкодоступна растениям, но избыточна (т.к. мало воздуха и нарушается газообмен) и поэтому непродуктивна. Полное насыщение почвы водой возможно после таяния снега или длительных дождей, однако это явление кратковременное.

Грунтовые воды играют важную роль в водном питании растений. Подходя близко к поверхности почвы, в северных районах они вызывают заболачивание, а в южных – засоление почвы. Критическая глубина залегания грунтовых вод, при которой происходит засоление почв на юге, колеблется в пределах 1,5 – 2,5 м.

§3. Водные свойства почвы и основные почвенно-гидрологические константы

Водный режим почвы зависит не только от количества атмосферных осадков, но и в значительной мере от водных свойств самой почвы. К главнейшим водным свойствам относятся водопроницаемость, водоподъемная способность (или капиллярность), влагоемкость.

Водопроницаемость – это способность почвы впитывать и пропускать через себя воду. Водопроницаемость измеряется объемом воды, протекающей через единицу площади поверхности почвы в единицу времени, выражается в мм водного столба в единицу времени.Процесс водопроницаемости включает впитывание влаги и ее фильтрацию. Впитывание происходит при поступлении воды в почву, не насыщенную водой, а фильтрация начинается тогда, когда большая часть пор почвы заполняется водой. Впитывание воды обусловлено сорбционными и капиллярными силами, фильтрация – силой тяжести.

Водопроницаемость зависит от механического состава, структуры (у структурных почв выше, чем у бесструктурных), содержания гумусовых веществ (в целом от общего объема пор в почве и их размера), а также от состава поглощенных катионов: натрий уменьшает водопроницаемость, а кальций – увеличивает. В легких по механическому составу почвах поры крупные и водопроницаемость всегда высокая. В почвах тяжелого механического состава с глыбисто-пылеватой структурой и плотных бесструктурных почвах водопроницаемость низкая. После оструктуривания такие почвы в несколько раз улучшают фильтрационную способность (суглинистые и глинистые почвы, обладающие водопрочной комковато-зернистой структурой, также отличаются высокой водопроницаемостью).

Хорошо водопроницаемыми считаются почвы, в которых вода в течение первого часа проникает на глубину до 15 см. В средневодопроницаемых почвах вода за первый час проходит от 5 до 15 см, а в слабоводопроницаемых – до 5 см. От этого свойства зависит степень использования водных ресурсов. При слабой водопроницаемости часть атмосферных осадков или оросительной воды стекаетпо поверхности, что приводит к непродуктивному расходованию влаги, могут происходить вымокание культур, застаивание воды на поверхности и развиваться эрозия почвы. При очень высокой водопроницаемости не создается хороший запас воды в корнеобитаемом слое почвы, а в орошаемом земледелии наблюдается большая потеря на полив.

Водоподъемная способность свойство почвы поднимать содержащуюся в ней влагу за счет капиллярных сил (вода в почвенных капиллярах образует вогнутый мениск, на поверхности которого создается поверхностное натяжение). Высота капиллярного поднятия воды зависит от диаметра капилляров: чем они тоньше, тем выше поднятие, и наоборот. Поэтому водоподъемная способность растет от песчаных почв к суглинистым и глинистым. Максимальная высота подъема воды над уровнем грунтовых вод для песчаных почв 0,5 – 0,8 м, для суглинистых – 2,5 – 3,5 м, в глинистых почвах – 3,0 6,0 м.Скорость подъема зависит от размера пори вязкости воды, обусловливаемой ее температурой. По крупным порам вода поднимается быстрее, чем в почвах с тонкими капиллярами.С повышением температуры уменьшается вязкость воды, поэтому скорость ее капиллярного поднятия повышается. Растворенные в воде соли также оказывают значительное влияние на скорость капиллярного подъема. Минерализованные грунтовые воды в отличие от пресных поднимаются к поверхности по капиллярам с большей скоростью.

Благодаря капиллярным явлениям и водоподъемной способности почв грунтовые воды участвуют в дополнительном снабжении растений водой, особенно в засушливые годы, развитии восстановительных процессов и засолении почвенного профиля.

Влагоемкость – способность почвы впитывать и удерживать определенное количество воды. Выражается в % к весу сухой почвы. Эта способность зависит от гранулометрического состава, содержания гумуса, состава поглощенных катионов. Высокая влагоемкость характерна для глинистых почв, богатых коллоидами, с высоким содержанием гумуса. Высокой влагоемкостью обладают почвы, содержащие известь, хлориды, слабовлагоемкие песчаные почвы.

Различают следующие виды влагоемкости: максимальную гигроскопическую, капиллярную, полевую и полную.

Максимальная гигроскопическая влагоемкость (МГВ) – это наибольшее недоступное растениям количество влаги (мертвый запас влаги), которое прочно удерживается молекулярными силами почвы (адсорбцией). Величина этой влагоемкости зависит от суммарной поверхности частиц, а также содержания гумуса: чем больше в почве илистых частиц и гумуса, тем она выше.

Капиллярная влагоемкость – максимальное количество воды (капиллярно-подпертой влаги), которое удерживается в почве над уровнем грунтовых вод при заполнении капиллярных пор. Кроме свойств почвы, величина капиллярной влагоемкости зависит от высоты над зеркалом грунтовых вод. Вблизи грунтовых вод она наибольшая, а с поднятием к поверхности уменьшается и на границе капиллярной каймы равна наименьшей влагоемкости.

Наименьшая влагоемкость (НВ), или предельная полевая влагоемкость (ППВ) – это наибольшее количество воды, которое остается в почве после ее полного увлажнения и свободного стекания избыточной воды. Величина наименьшей влагоемкости зависит от гранулометрического и минералогического состава, плотности и пористости почвы. Она соответствует величине капиллярно-подвешенной воды. Наименьшая влагоемкость – важнейшая характеристика водных свойств почвы, дающая представление о наибольшем количестве воды, которое почва способна накопить и длительное время удерживать. Она составляет (в % от веса абсолютно сухой почвы): для песчаных – 4 – 9, супесчаных – 10 – 17, легко- и среднесуглинистых – 18 – 30, тяжелосуглинистых и глинистых – 23 – 40. Наибольшие значения ППВ характерны для гумусированных почв тяжелого механического состава, обладающих хорошо выраженной макро- и микроструктурой.

Полной влагоемкостью (ПВ) называется наибольшее количество воды, которое может вместить почва при полном заполнении всех ее пор водой при отсутствии оттока (численно равна пористости почвы).

Оптимальной влажностью для большинства культурных растений условно принято считать влажность, приблизительно равную 50 % полной влагоемкости данной почвы. Для большинства зерновых культур оптимальная влажность составляет 30 – 50 %, для зернобобовых – 50 – 60 %, технических растений и корнеплодов – 60 – 70 %, сеяных луговых трав (злаков и бобовых) – 80 – 90 % ПВ почвы. Поэтому оптимальная влажность почвы для разных растений и почв должна несколько отклоняться от условно принятой.

Полевая влажность (WП) характеризует содержание влаги в почве на данный момент, выражается в % к массе сухой почвы.

Из общего количества влаги, содержащейся в почве при ее полном насыщении, выделяют такие пограничные значения влажности, при которых меняются поведение воды и ее доступность растениям. Границы значений влажности, характеризующие пределы появления различных категорий почвенной влаги, называются почвенно-гидрологическими константами. Наиболее широко используются следующие: максимальная гигроскопическая влагоемкость, влажность разрыва капилляров (ВРК), влажность завядания (ВЗ), наименьшая влагоемкость (НВ) и полная влагоемкость (ПВ).

При влажности НВ вся система капиллярных пор заполнена водой, поэтому создаются оптимальные условия влагообеспеченности растений. По мере испарения и потребления воды растениями теряется сплошность заполнения водой капилляров, уменьшаются подвижность воды и доступность ее растениям. Влажность, при которой происходит разрыв сплошного заполнения капилляров водой, называется влажностью разрыва капилляров (ВРК). Это важная гидрологическая константа почвы, характеризующая нижний предел оптимальной влажности. Для суглинистых и глинистых почв ВРК составляет 65 – 70 % НВ.

Влажность завядания растений – это почвенная влажность, при которой у растений появляются признаки завядания, не исчезающие при помещении растений в атмосферу, насыщенную водяными парами, т.е. это нижний предел доступной растениям влаги (численно равна 1,5 * МГ). Влажность завядания зависит от вида растений и свойств почвы. Чем тяжелее механический состав почвы, чем больше в ней органического вещества, тем выше ВЗ. В среднем она составляет: в песках – 1 – 3 %, в супесях – 3 – 6 %, в суглинках – 6 – 15 %, в торфяных почвах – 50 – 60 %.

Для растений доступна только та часть почвенной влаги, которая может быть усвоена в процессе жизнедеятельности. Она называется продуктивной влагой, так как используется для образования урожая и вычисляется как разница между ППВ и ВЗ. Зная количество продуктивной влаги, можно рассчитать урожай растений (1 % продуктивной влаги дает 1 ц зерна) и дефицит влаги.

Продуктивный запас влаги (ПЗВ) в определенном слое (или почвенном профиле) вычисляют, зная общий запас воды (ОЗВ) в этом слое и запас труднодоступной воды (ЗТВ). Запас воды определяют для каждого почвенного горизонта по формуле:

где В – запас воды, м 3 /га для слоя Н, WП – полевая влажность, dV – объемная плотность почвы, г/см 3 , Н – мощность горизонта, см. Запас труднодоступной воды рассчитывают по той же формуле, но вместо WП берут ВЗ. Для пересчетов запасов воды, выраженных в м 3 /га, в мм их умножают на 0,1 (запас воды в 1 мм водного столба на площади 1 га равен 10 т воды). Разность между этими показателями дает продуктивный запас влаги: ПЗВ = ОЗВ – ЗТВ. Оценка запасов продуктивной влаги представлена в таблице 11.

Источник

Читайте также:  Детские рисунки как экономить воду
Оцените статью