Вода как сырье для производства

Воздух и вода как сырье химической промышленности

Химическая промышленность использует воздух и воду в огромных количествах и для самых разнообразных целей. Это объясняется комплексом ценных свойств воздуха и воды, их доступностью и удобствами применения.

Воздух в химической промышленности применяют в основном как сырье или как реагент в технологических процессах, а также для энергетических целей.

Технологическое применение воздуха обусловлено химическим составом атмосферного воздуха; сухой, чистый воздух содержит (объемная доля в %): N2 ‑ 78,10; О2 ‑ 20,93; Аr ‑ 0,93; СО2

0,03 и незначительные количества Не, Nе, Кr, Хе, Н2, СН4, О3, NО.

Чаще всего используют кислород воздуха в качестве окислителя: окислительный обжиг сульфидных руд цветных металлов, серосодержащего сырья при получении диоксида серы в сернокислотном, целлюлозно-бумажном производствах; неполное окисление углеводородов при получении спиртов, альдегидов, кислот и др. Кислород, выделяемый ректификацией жидкого воздуха, в больших количествах расходуют для кислородной плавки металлов, в доменном процессе и т. п.; при ректификации получают также азот и инертный газы, в основном аргон.

Азот используют в качестве сырья в производстве синтетического аммиака и других азотсодержащих веществ и как инертный газ. Воздух, применяемый в качестве реагента, подвергается, в зависимости от характера производства, очистке от пыли, влаги и контактных ядов. Для этого воздух пропускают через промывные башни с различными жидкими поглотителями (Н2О, щелочи, этаноламины и др.), мокрые и сухие электрофильтры, аппараты с влагопоглотительными сорбентами и пр.

Энергетическое применение воздуха связано, прежде всего, с использованием кислорода как окислителя для получения тепловой энергии при сжигании различных топлив.

Читайте также:  Что такое установка дымохода по воде

Воздух используется также как хладоагент при охлаждении газов и жидкостей через теплообменные поверхности холодильников или в аппаратах прямого контакта (например, охлаждение воды в градирнях), при грануляции расплавов некоторых соединений (например, аммиачной селитры). В других случаях нагретый воздух используется как теплоноситель для нагрева газов или жидкостей.

В пневматических барботажных смесителях используют сжатый воздух для перемешивания жидкостей и пульпы, в форсунках ‑ для распыления жидкостей в реакторах и топках.

Вода обладает универсальными свойствами, благодаря чему находит в народном хозяйстве разнообразное применение как сырье, в качестве химического реагента, как растворитель, тепло- и хладоноситель.

Например, из воды получают водород различными способами, водяной пар в тепловой и атомной энергетике; вода служит реагентом в производстве минеральных кислот, щелочей и оснований, в производстве органических продуктов ‑ спиртов, уксусного альдегида, фенола и других многочисленных реакциях гидратации и гидролиза. Водяной пар и горячая вода имеют значительные преимущества перед другими теплоносителями ‑ высокую теплоемкость, простоту регулирования температуры в зависимости от давления, высокую термическую стойкость и пр., вследствие чего являются уникальными теплоносителями при высоких температурах. Воду используют также как хладоагент для отвода теплоты в экзотермических реакциях, для охлаждения атомных реакторов, где необходима “сверхдистиллированная” вода.

Природные воды содержат различные примеси минерального и органического происхождения. К минеральным примесям относятся газы N2, О2, СО2, Н2S, NН3, растворенные в воде соли, кислоты и основания находятся в основном в диссоциированном состоянии в виде катионов и анионов. К органическим примесям относятся коллоидные частицы белковых веществ и гуминовых кислот. Состав и количество примесей зависят главным образом от происхождения воды.

По происхождению различают атмосферные, поверхностные и подземные воды.

Атмосферная вода ‑ вода дождевых и снеговых осадков ‑ характеризуется небольшим содержанием примесей. В этой воде содержатся в основном растворенные газы и почти полностью отсутствуют растворенные соли.

Поверхностные воды ‑ воды речных, озерных и морских водоемов ‑ отличаются разнообразным составом примесей ‑ газы, соли, основания, кислоты. Наибольшим содержанием минеральных примесей отличается морская вода (солесодержание более 10 г/кг).

Подземные воды ‑ воды артезианских скважин, колодцев, ключей, гейзеров ‑ характеризуются различным составом растворенных солей, который зависит от состава и структуры почв и горных пород. В подземных водах обычно отсутствуют примеси органического происхождения.

Качество воды определяется ее физическими и химическими характеристиками, такими как прозрачность, цвет, запах, температура, общее солесодержание, жесткость, окисляемость и реакция воды. Эти характеристики показывают наличие или отсутствие тех или иных примесей.

Общее солесодержание характеризует присутствие в воде минеральных и органических примесей.

Для большинства производств основным качественным показателем служит жесткость воды, обусловленная присутствием в воде солей кальция и магния. Жесткость выражается в миллиграмм-эквивалентах ионов Са или Мg в 1 кг воды, т. е. за единицу жесткости принимают содержание 20,04 мг/кг ионов кальция или 12,16 мг/кг ионов магния. Различают три вида жесткости: временную, постоянную и общую.

Временная (карбонатная или устранимая) жесткость обусловлена присутствием в воде гидрокарбонатов кальция и магния, которые при кипячении воды переходят в нерастворимые средние или основные соли и выпадают в виде плотного осадка (накипи):

Са(НСО3)2 = СаСО3 + Н2О + СО2

2Мg(НСО3)2 = МgСО3 . Мg(ОН)2 + ЗСО2 + Н2О

Постоянная (некарбонатная, неустранимая) жесткость обусловливается содержанием в воде всех других солей кальция и магния, остающихся при кипячении в растворенном состоянии.

Сумма временной и постоянной жесткости называется общей жесткостью. Принята следующая классификация природной воды по значению общей жесткости (h в мг-экв/кг): h 12,0 ‑ очень высокая.

Окисляемость воды характеризуется наличием в воде органических примесей и выражается в миллиграммах кислорода, расходуемого на окисление веществ, содержащихся в 1 кг воды.

Активная реакция воды ‑ ее кислотность или щелочность характеризуется концентрацией водородных ионов. Реакция природных вод близка к нейтральной; рН ‑ водородный показатель, равный (-lg aH+), колеблется в пределах 6,8-7,3.

Производства в зависимости от целевого назначения воды предъявляют строго определенные требования к ее качеству, к содержанию примесей
в ней; допустимые количества примесей регламентируются соответствующими ГОСТами. Природная вода, поступающая в производство, подвергается очистке различными методами в зависимости от характера примесей и требований, предъявляемых к воде данным производством.

В промышленности в целях экономии расхода воды применяют так называемую оборотную воду, т. е. использованную и возвращенную в производственный цикл.

Источник

Вода — основа жизни и базовое промышленное сырье

Вода является основой жизни и сырьем для огромного количества технологий во всех отраслях промышленности.

Вода — прекрасный растворитель как неорганических, так и многих органических веществ и газов, что объясняется ее сильнополяризованной структурой. Из-за этого в чистом виде она в природе не существует. Все природные воды являются растворами тех или иных веществ, с которыми вода контактировала в процессе круговорота. Эти вещества могут быть полезны или вредны для человеческого организма при использовании воды для питьевых целей или в пищевой промышленности. При использовании воды в промышленности для многих технологических процессов действуют жесткие ограничения по содержанию в ней тех или иных примесей.

Вода содержится в поверхностных или подземных источниках. Подземные воды содержат в основном природные компоненты — продукты растворения пород, с которыми контактировала вода. Состав таких вод относительно стабилен. Воды одного горизонта, отобранные в разных точках, даже отстоящих на большом расстоянии, достаточно близки по составу. При этом воды из находящихся рядом скважин, пробуренных в разные горизонты, могут различаться достаточно сильно. В поверхностных водах наряду с природной составляющей во все большем количестве присутствуют техногенные загрязнения. Поверхностные воды интенсивно загрязняются отходами сельского хозяйства, промышленности, энергетики, городскими стоками и т. п. Состав таких вод зависит от большого количества факторов: времени года, дождей, наличия притоков, режима работы промышленных, сельскохозяйственных и муниципальных предприятий и т. п. Поэтому состав вод по течению реки до и после населенных пунктов может значительно отличаться.

Состав воды по макро- и микрокомпонентам для питьевого или промышленного применения должен удовлетворять определенным нормам, которые рассмотрены ниже. Очистка воды до заданных концентраций по различным загрязнителям осуществляется многочисленными методами, которые были разработаны ранее, совершенствуются и создаются в настоящее время.

Источник

Вода как сырье и вспомогательный компонент производства. Источники воды. Промышленная водоподготовка

Промышленная водоподготовка представляет собой совокупность физических и химических операций, обеспечивающих очистку воды от механических примесей, растворенных солей и газов. Поскольку характер примесей и требования, предъявляемые к качеству воды, могут быть различными, в производстве существует несколько видов водоочистки, основными из которых являются: очистка от взвешенных примесей отстаиванием и фильтрацией, умягчение и обессоливание воды, дегазация, обеззараживание

4.Общая характеристика и классификация энергетических ресурсов. Источники энергии. Рациональное использование энергии.Основой энергетического хозяйства общества, источником и энергоносителей, и следовательно собственно энергии являются энергоресурсы, что, очевидно означает краткое название энергетических ресурсов. Все энергоресурсы делятся на первичные и вторичные. Первичные ресурсы есть результат природных процессов. К ним относится природное топливо, а также энергия солнца, ветра, водных ресурсов, биомассы и др. К вторичным энергетическим ресурсам относятся все переработанные иные или преобразованные виды топлива, а также побочная энергия производственных процессов или процессов в сфере потребления может быть утилизирована и использована вторично. Эта категория включает продукты нефтепереработки, облагороженное топливо, а также отработанный пар, отходы тепла, горячие газы. Следуя этой логике, к вторичным энергоресурсам следует отнести также сберегаемую энергию. Энергоресурсы можно разделить на топливные и нетопливные. Первичные энергоресурсы могут быть возобновляемые и невозобновляемые. Возобновляемые природные ресурсы это такие объекты, о восстановлении запаса которых заботится сама природа. Многие из них практически не зависят от того, в какой мере общество вовлекает их в хозяйственный оборот: солнечная энергия, гидроресурсы, ветер. Есть и другие — такие, использование которых ведет к уменьшению их запаса в краткосрочном и даже достаточно длительном времени. Пример — биомасса. Они, однако, могут рассматриваться как возобновляемые в длительной перспективе. Невозобновляемые энергоресурсы это такие ресурсы, запас которых принципиально исчерпаем, — минеральное топливо, уран. Будучи разнообразными по качеству, энергоресурсы обладают определенной взаимозаменяемостью; вместо угля может быть использован мазут или газ, вместо урана — солнечная энергия и т.д. Как правило, обществу не безразлично, какие виды ресурсов или энергоносителей применить для достижения поставленных целей.Энергоэффективность — эффективное (рациональное) использование энергетических ресурсов. Использование меньшего количества энергии для обеспечения того же уровня энергетического обеспечения зданий или технологических процессов на производстве. Достижение экономически оправданной эффективности использования ТЭР при существующем уровне развития техники и технологии и соблюдении требований к охране окружающей среды. Эта отрасль знаний находится на стыке инженерии,экономики, юриспруденции и социологии.

В отличие от энергосбережения (сбережение, сохранение энергии), главным образом направленного на уменьшениеэнергопотребления, энергоэффективность (полезность энергопотребления) — полезное (эффективное) расходование энергии.

Для населения — это значительное сокращение коммунальных расходов, для страны — экономия ресурсов, повышениепроизводительности промышленности и конкурентоспособности, для экологии — ограничение выброса парниковых газов в атмосферу, для энергетических компаний — снижение затрат на топливо и необоснованных трат на строительство. [1] Энергосберегающие и энергоэффективные устройства — это, в частности, системы подачи тепла, вентиляции, электроэнергии при нахождении человека в помещении и прекращающие данную подачу в его отсутствии. Беспроводные сенсорные сети (БСН) могут быть использованы для контроля за эффективным использованием энергии.Энергоэффективные технологии могут применяться в освещении (напр. плазменные светильники на основе серы), в отоплении (инфракрасное отопление, теплоизоляционные материалы).

Химико-технологическая система ( ХТС) — это упорядоченное множество взаимосвязанных технологическими потоками и действующих как одно целое аппаратов, в которых протекают ХТП, осуществляющие требуемую совокупность трех основных операций подготовки сырья, собственно химического превращения и выделения целевых продуктов. Элемент ХТС — это аппарат, в котором проводится некоторый процесс

Производственные процессы в химической промышленности и сходных ей областях характеризуются большим разнообразием выпускаемой продукции и большой сложностью. Условия протекания отдельных стадий могут быть весьма различными: от высоких температур (

1500 0 С) в случае электрокрекинга углеводородов до очень низких температур при разделении воздуха, от высоких давлений при производстве аммиака и метанола до низких в процессах вакуумной перегонки. Одни процессы проводят в водной фазе, в других даже следовые количества воды могут полностью дезорганизовать процесс. Технологические схемы получения того или иного продукта могут быть более или менее компактными.

Несмотря на существенные качественные и количественные различия отдельных технологических процессов, разнообразие комбинаций аппаратов, используемых для их реализации, различные мощности и условия протекания, все они имеют общие свойства.

Каждое производство в соответствии с общей теорией систем является сложной системой, которая называется химико-технологической системой.

Химико-технологические системы (ХТС) представляют собой совокупность физико-химических процессов и средств их осуществления с целью получения продукта заданного количества и в требуемом количестве.

ХТС состоит из элементов, т.е. из отдельных аппаратов, в которых протекают технологические операции, необходимые для достижения цели, поставленной перед ХТС.

Элементы, составляющие ХТС, являются функционально взаимосвязанными. Например, в системе, представленной на рисунке, исходный поток сырья нагревается за счет теплоты реакционной смеси, причем количество теплоты, выделившейся в реакторе, зависит от температуры потока на входе в реактор. Аналогично существует связь между абсорбером и ректификационной колонной в системе разделения продуктов. Более интенсивно работающий абсорбер определяет меньшие требования к ректификации. Более того, система может приобретать новые свойства, которые отличаются от свойств отдельных элементов. Так, изображенная на рисунке система может работать в неустойчивом режиме, если уровень тепловыделений в реакторе достигнет определенного значения.

Источник

Оцените статью