Вода кипит если давление

Вода кипит если давление

Непосредственные наблюдения за поведением жидкости свидетельствуют, что при некоторых температуре и давлении в жидкостях начинается процесс кипения. Разберемся в механизме этого явления.

Обычно в жидкости или на стенках сосуда, в котором она находится, присутствуют пузырьки растворенного в ней воздуха. При нагревании жидкости растворимость содержащихся в ней газов понижается. В результате число таких пузырьков значительно увеличивается. Газовые пузырьки в процессе закипания играют роль аналогичную той, которую играют ионы или пылинки при конденсации. В эти пузырьки происходит испарение окружающей их жидкости, вследствие чего пузырьки наполняются насыщенным паром, давление которого с повышением температуры увеличивается.

Пока температура жидкости такова, что давление насыщенного пара внутри пузырька меньше внешнего давления над жидкостью, пузырек не может расти. При некоторой температуре давление насыщенного пара внутри пузырька становится равным давлению, оказываемому на пузырек извне. Это давление равно сумме атмосферного давления, гидростатического давления, обусловленного столбом жидкости над пузырьком и дополнительного давления, связанного с кривизной поверхности пузырька (давление Лапласа). Расчеты показывают, что вклад гидростатического давления и давления Лапласа существенной роли в этом процессе не играют. Чаще всего мы имеем дело с процессом кипения при нормальном атмосферном давлении , а для того чтобы гидростатическое давление вносило вклад, сравнимый с давлением атмосферы, столб воды должен составлять хотя бы несколько метров, чего обычно в реальной ситуации не бывает. Давление Лапласа существенно тогда, когда радиус пузырьков порядка , что значительно меньше размеров пузырьков, образующихся в процессе кипения.

Читайте также:  Морской аквариум как делать воду

При некоторой температуре, когда давление насыщенного пара внутри пузырьков становится равным внешнему давлению, точнее говоря, несколько больше, пузырьки, быстро увеличиваясь в размерах, устремляются вверх и прорываются наружу. С этого момента жидкость начинает кипеть.

Рассмотрев механизм закипания жидкости, подчеркнем, что кипение существенно отличается от испарения. Во-первых, испарение происходит при любой температуре, кипение же для каждой жидкости при определенном давлении имеет место при строго определенной температуре, называемой точкой кипения. Если процесс кипения начался, температура жидкости, несмотря на продолжающееся сообщение теплоты, не повышается. Она так и останавливается на точке кипения до тех пор, пока не выкипит вся жидкость. Во-вторых, в процессе кипения жидкость испаряется не только с поверхности, но и с поверхности пузырьков внутри жидкости.

Итак, для того, чтобы жидкость закипела, нужно довести ее температуру до такого значения, при котором давление насыщенного пара внутри содержащихся в жидкости пузырьков хотя бы чуточку превышало внешнее давление.

Из приведенных рассуждений видно, что с уменьшением внешнего давления должна понижаться и температура кипения жидкости.

Принято считать, что точке кипения воды при нормальном атмосферном давлении соответствует температура 100º С. Однако жителям высокогорных селений хорошо известен факт закипания воды при значительно более низкой температуре. Так на вершине Эльбруса вода закипает уже при 82º С. Физическим фактором, ответственным за изменение температуры кипения, является уменьшение внешнего давления в высокогорных районах. Вода кипит при 100º С только при давлении 760 мм Hg. При давлении 0,5 атм она закипает при 82º С, а при давлении 10-15 мм Hg вода закипает в интервале температур 10-15º С. Можно получить даже «кипяток», имеющий температуру замерзающей воды. Для этого придется понизить внешнее давление до 4,6 мм Hg.

Читайте также:  Ципрофлоксацин лидокаин вода для инъекций

Интересный результат можно наблюдать, если в колбу поместить небольшое количество воды при комнатной температуре и начать откачивать из колбы воздух. Исход опыта зависит от скорости откачки. Если откачка производится достаточно медленно, то вода должна рано или поздно закипеть. Если же откачка производится достаточно быстро, то вода, напротив, замерзает. В результате откачки воздуха, а вместе с ним и паров воды, усиливается процесс испарения, в ходе которого вода остывает. При медленной откачке понижение температуры жидкости компенсируется за счет поступления теплоты извне, поэтому температура вода остается постоянной. Если же откачка производится быстро, то вода не успевает получить тепло от окружающей среды. Так как температура воды начинает понижаться, возможность ее закипания также уменьшается. Дальнейшее продолжение быстрой откачки воздуха из колбы со временем приведет к понижению температуры жидкости до точки замерзания.

Отмечая факт понижения температуры кипения с уменьшением давления, естественно ожидать, что с повышением давления температура кипения будет повышаться. Действительно, при давлении 15 атм кипение воды начинается при 200º С, а давление в 80 атм вызывает кипение воды даже при 300º С.


Рис. 6.6

Итак, определенному внешнему давлению соответствует своя температура кипения, или каждой температуре кипения соответствует вполне определенное давление. Напомним, что это давление называется упругостью пара (кипение начинается, когда упругость насыщенного пара внутри пузырьков жидкости равна внешнему давлению). Поэтому кривая, изображающая зависимость температуры кипения от давления, одновременно представляет собой кривую зависимости упругости пара от температуры. Вид этой кривой изображен на рис. 6.6. Из рис. 6.6 видно, что упругость пара с изменением температуры меняется очень быстро, а температура кипения с изменением давления — довольно медленно. Эта же кривая описывает и процесс конденсации. Превратить пар в воду можно либо сжатием, либо охлаждением. Только для точек, лежащих на приведенной кривой, возможно одновременное сосуществование жидкости и ее пара. Если исключить теплообмен такой двухфазной системы с окружающей средой, то количество жидкости и пара в закрытом сосуде будет оставаться неизменным. Таким образом, кривая кипения и конденсации — это кривая равновесия жидкости и пара. Она делит поле диаграммы на две части. Влево и вверх (область высоких температур и невысоких давлений) расположена область устойчивого состояния пара, вправо и вниз — область устойчивого состояния жидкости.

Отметим еще, что кривая равновесия жидкость-пар качественно имеет один и тот же вид для различных жидкостей. Во всех случаях упругость пара быстро растет с повышением температуры.

Источник

Кипение воды в различных состояниях и условиях

Кипение — способ образования пара, происходящий при определенных значениях температуры и атмосферного давления. Изменение одного из этих условий ведет к коррекции другого. Известно, что обычно вода закипает при +100?С. При создании же вакуума, например, в специальных сушильных шкафах, этот показатель снижается и при 100 мбар составляет всего +46?С.

Как происходит кипение?

При нагреве на дне и стенках посуды с водой появляются пузырьки пара. Температура в них значительно выше, чем в остальной жидкости, а давление ниже. Когда оно становится одинаковым и внутри, и снаружи, вода начинает кипеть. Во время этого процесса, несмотря на продолжающийся нагрев, температура жидкости мало изменяется. Кипение продолжается, пока вся она не обратится в пар.

Что происходит с изменением давления?

При повышении этого показателя, соответственно, увеличивается и температура. Так, в герметично закрытой пароварке кипение происходит при +120?С.

Понижение атмосферного давления в естественных условиях можно наблюдать при восхождении в горы. На высоте 6000 метров температура кипения воды составляет +80?. Заварить чай там довольно сложно. Зато в подземной шахте кипяток будет более горячий, чем где-либо еще.

Вакуум

Дальнейшее снижение давления естественным путем невозможно, но оно достигается в лабораторных условиях. Такая разреженная среда называется вакуум. При давлении в нем 0,001 атмосфер вода закипит при температуре +6,7?. Эти свойства используются в работе вакуумных сушильных шкафов. В условиях герметизации и отсутствия воздуха удаление остатков влаги из продуктов происходит при более низкой температуре, что позволяет сохранить в них полезные вещества.

Космос

Здесь кипячение выглядит по-другому. При повышении температуры жидкость не поднимается к поверхности, а остается на дне и продолжает нагреваться дальше. Вода, более удаленная от источника тепла, изменяется мало. Формирующиеся пузырьки пара не поднимаются на поверхность, а объединяются в один большой, который колышется в жидкости.

Источник

Зависимость температуры кипения воды от давления:

Температура кипения — это температура, при которой происходит кипение жидкости, которая находится под постоянным давлением. Согласно уравнению Клапейрона — Клаузиуса с ростом давления температура кипения увеличивается, а с уменьшением давления температура кипения соответственно уменьшается.

Если жидкость получает теплоту, то она будет нагреваться и через некоторое время начнет кипеть. По наблюдениям этот про­цесс сопровождается образованием в объеме жидкости пузырьков насыщенного пара. С повышением температуры их количество на стенках сосуда возрастает, а размеры уве­личиваются. При определенной температуре давление пара в пузырьках становится рав­ным давлению в жидкости, и они под дей­ствием силы Архимеда начинают всплывать. Когда такой пузырек достигает поверхности жидкости, он лопается и выбрасывает пар наружу.

Кипение — это внут­реннее парообразование, которое происходит во всем объеме жидкости при температуре, когда давление насыщенного пара равно дав­лению в жидкости.

Установлено, что при кипении темпе­ратура жидкости остается постоянной— при достижении температуры кипения все пре­доставленное количество теплоты идет на парообразование. Если жидкость не получает теплоту, кипение прекратится, поскольку не будет поступать энергия для внутреннего парообразования.

Кипение осуществляется при температуре, когда давление насыщенного пара в пузырьках равно давлению в жидкости.

Каждое вещество имеет собственную тем­пературу кипения. Очевидно, что ее значение определяется давлением насыщенного пара при данной температуре, поскольку кипение наступает тогда, когда давление насыщенного пара уравнивается с давле­нием в жидкости. Поэтому температура кипения жидкостей зависит от внешнего давления — чем оно выше, тем выше долж­на быть температура кипения, и наоборот.

Температура кипения воды при этом давлении:
o C

Удельный объем насыщенного пара:
м 3 /кг

Удельная теплота парообразования:
кДж/кг

Источник

Вода кипит если давление

§ 34. Кипение. Зависимость температуры кипения от давления

Парообразование может происходить не только в результате испарения, но и при кипении. Рассмотрим кипение с энергетической точки зрения.

В жидкости всегда растворено некоторое количество воздуха. При нагревании жидкости количество растворенного в ней газа уменьшается, вследствие чего часть его выделяется в виде маленьких пузырьков на дне и стенках сосуда и на взвешенных в жидкости нерастворенных твердых частичках. Происходит испарение жидкости во внутрь этих воздушных пузырьков. Со временем пары в них становятся насыщенными. При дальнейшем нагревании увеличиваются давление насыщенного пара внутри пузырьков и их объем. Когда давление пара внутри пузырьков становится равным атмосферному, они под действием выталкивающей силы Архимеда поднимаются на поверхность жидкости, лопаются, и из них выходит пар. Парообразование, происходящее одновременно и с поверхности жидкости и внутри самой жидкости в воздушные пузырьки, называется кипением. Температура, при которой давление насыщенных паров в пузырьках становится равно внешнему давлению, называется температурой кипения.

Так как при одинаковых температурах давления насыщенных паров разнообразных жидкостей разные, то при различных температурах они становятся равными атмосферному давлению. Это приводит к тому, что разные жидкости кипят при различных температурах. Данное свойство жидкостей используется при возгонке нефтепродуктов. При нагревании нефти первыми испаряются наиболее ценные, летучие ее части (бензин), которые таким образом отделяются от «тяжелых» остатков (масел, мазута).


Рис. 37. Зависимость температуры кипения жидкости от давления

Из того, что кипение наступает, когда давление насыщенных паров равно внешнему давлению на жидкость, следует, что температура кипения жидкости зависит от внешнего давления. Если оно увеличено, то жидкость кипит при более высокой температуре, так как для достижения такого давления насыщенным парам необходима более высокая температура. Наоборот, при пониженном давлении жидкость кипит при более низкой температуре. В этом можно убедиться на опыте. Нагреем воду в колбе до кипения и уберем спиртовку (рис. 37, а). Кипение воды прекращается. Закрыв пробкой колбу, начнем насосом удалять из нее воздух и пары воды, уменьшая тем самым давление на воду, которая в»результате этого закипает. Заставив ее кипеть в открытой колбе, накачиванием воздуха в колбу увеличим давление на воду (рис. 37, б). Кипение ее прекращается. При давлении 1 атм вода кипит при 100° С, а при 10 атм — при 180° С. Эта зависимость используется, например в автоклавах, в медицине для стерилизации, в кулинарии для ускорения варки пищевых продуктов.

Чтобы жидкость начала кипеть, ее следует нагреть до температуры кипения. Для этого надо жидкости сообщить энергию, например количество теплоты Q = cm(t°к — t°0). При кипении температура жидкости остается постоянной. Так происходит потому, что сообщаемое при кипении количество теплоты затрачивается не на увеличение кинетической энергии молекул жидкости, а на работу разрыва молекулярных связей, т. е. на парообразование. При конденсации пар по закону сохранения энергии отдает в окружающую среду такое количество теплоты, которое было затрачено на парообразование. Конденсация происходит при температуре кипения, которая в процессе конденсации остается постоянной. (Объясните почему).

Составим уравнение теплового баланса при парообразовании и конденсации. Пар, взятый при температуре кипения жидкости, по трубке А. поступает в воду, находящуюся в калориметре (рис. 38, а), конденсируется в ней, отдавая ей затраченное на его получение количество теплоты. Вода и калориметр получают при этом количество теплоты не только от конденсации пара, но и от жидкости, которая при этом получается из него. Данные физических величин приведены в табл. 3.


Таблица 3

Конденсирующийся пар отдал количество теплоты Qп = rm3 (рис. 38, б). Жидкость, полученная из пара, охладившись от t°3 до θ°, отдала количество теплоты Q3 = c2m3 (t3° — θ°).


Рис. 38. К выводу уравнения теплового баланса при кипении и конденсации

Калориметр и вода, нагреваясь от t°2 до θ° (рис. 38, в), получили количество теплоты

На основании закона сохранения и превращения энергии

Это уравнение называется уравнением теплового баланса при парообразовании и конденсации.

Задача 14. Перед тем как подать бревно в лесопильную раму, его в зимнее время освобождают от снега и льда, для чего оно некоторое время находится в бассейне, вода которого подогревается паром. Рассчитать, какое количество 100-градусного пара расходуется за смену для плавления 5 т снега и льда и нагревания воды, полученной из них. Температура воздуха -20° С; конечная температура воды в бассейне стала 30° С. Масса воды в бассейне 10 т, при работе бассейна ее температура повышается на 5° С.


Рис. 39. К задаче 14

Источник

Оцените статью