Неорганические соединения. Вода и ее свойства
Среди всех веществ на первом месте по массе находится вода. Она составляет около 60-70 %, а в некоторых организмах-до 98 % содержимого. В эмали зубов — 10 %, в нервных клетках — до 85 %. Содержание воды зависит от возраста организма, его активности. Наиболее высокое содержание воды у эмбрионов (90-95 %). У эмбриона человека в 1,5 месяца вода составляет 97,5 %, у восьмимесячного — 83 %, у новорожденного ребенка 74 %, у взрослого человека — в среднем 66 %. С возрастом содержание воды постепенно уменьшается. Содержание воды в разных тканях различное и зависит от их метаболической активности: чем более интенсивные процессы обмена веществ, тем выше содержание воды.
Плотность
Теплоемкость воды и метана. Плотность и структура воды и льда. Гидратация: глицерин, катион и анион.
Вода имеет наибольшую плотность при 4 °С, а плотность льда меньше, чем плотность воды. Поэтому водоемы промерзают очень медленно, снаружи покрываясь льдом.
Вода почти не сжимается, что важно для придания формы и упругости клеткам, органам и тканям, обеспечивает тургорное давление, необходимое положение органов и частей организма в пространстве. В сравнении с другими жидкостями вода характеризуется высокой температурой кипения, плавления, большей теплотой испарения (что обеспечивает защиту организма от перегревания). Объясняется это тем, что молекулы воды более крепко связаны между собой, чем молекулы других растворителей.
Форма
Вода находится в двух формах — свободной и связанной (структурированной). Свободная вода составляет 95 % всей воды клетки. Используется преимущественно как растворитель и среда для коллоидной системы цитоплазмы. Связанная вода составляет 4-5% всей воды клетки.
Полярность
Молекулы воды полярны, состоят из двух атомов водорода, которые соединены с атомом кислорода ковалентной связью. Они способны образовывать диполя (в области водорода преобладает положительный заряд, в области кислорода — отрицательный), которые формируют вокруг веществ (белков) водную оболочку и не позволяют им склеиваться. Вода неустойчиво соединена водородными и другими связями с белками.
Молекулы воды способны притягиваться одна к другой положительным и отрицательным зарядами, образуя водородные связи. Водородные связи слабее, чем ковалентные, в 15-20 раз. В жидком состоянии молекулы воды находятся в постоянном движении. Водородные связи при этом то создаются, то разрываются, создавая текучесть.
Растворитель
Вода хороший растворитель, лучше других жидкостей. В ней хорошо растворяется много минеральных и органических веществ, газов. Свойства растворителя обусловлены особенностями ее внутренней молекулярной структуры.
Вещество растворяется, если энергия притяжения молекул воды к молекулам любого вещества большая, чем энергия притяжения между молекулами воды. Вещества делятся, в зависимости от этого, на гидрофильные (от греч. гидрос — вода и филио — люблю), которые хорошо растворяются, и гидрофобные (от греч. гидрос — вода, фобос — бояться), которые практически не растворимы. Гидрофильные вещества: большинство солей натрия, калия, некоторые белки, кислоты и т. п. Гидрофобные — преимущественно неполярные вещества: жиры, жирообразные вещества, каучук, полисахариды и т. п. Они содержат неполярные группы, которые не взаимодействуют с молекулами воды. Проникновение веществ в клетку и выведение из нее продуктов диссимиляции возможно преимущественно только в растворенном виде.
Вода является важной, основной средой, где протекают важные химические реакции.
Вода непосредственно принимает участие в биохимических реакциях — реакциях гидролиза (от греч. гидрос — вода и лизис — расщепление). Например, расщепление белков, углеводов и других веществ происходит вследствие взаимодействия их с водой с участием ферментов.
Вода образуется вследствие многих химических реакций обмена веществ.
Теплоемкость
Вода имеет большую теплоемкость (способность поглощать тепло при незначительных изменениях собственной температуры) и высокую теплопроводность. То есть она является идеальной жидкостью для поддержания теплового равновесия организма, защищает клетку от резких колебаний температуры.
Вода является источником ионов водорода и кислорода при фотосинтезе. Водород используется для восстановления продуктов ассимиляции углекислого газа.
Вода активно участвует в поддержке осмотического давления в клетке. Осмосом (от греч. осмос — давление) называется проникновение молекул растворителя через полупроницаемую мембрану в раствор большей концентрации растворенного вещества. То есть осмос — это односторонняя диффузия молекул воды в направлении растворенного вещества. Переход молекул воды сквозь мембрану прекращается при выравнивании концентраций растворов или при повышении давления в более концентрированном растворе вследствие поступления в него воды. Давление, с которым вода проникает сквозь мембрану, называется осмотическим. Величина осмотического давления возрастает с увеличением концентрации раствора. Осмотическое давление жидкостей организма человека и млекопитающих равняется давлению 0,85% раствора хлорида натрия. Это — изотонический раствор. Два раствора с одинаковым осмотическим давлением, независимо от химического состава растворенных веществ, называются изотоническими (от греч. изос — равный и тонус — сила, напряжение). Более концентрированный раствор называется гипертоническим, менее — гипотоническим.
На явлениях осмоса основано движение воды проводящими тканями растений и напряженное состояние стенок растительных клеток — тургор (от лат. turgere — быть набухшим). Вода, которая всасывается корневыми волосками растений, содержит мало растворенных веществ. Вода проникает в клетки сквозь мембраны и создает в них повышенное давление, придает упругость (тургор) листьям, лепесткам цветов, стеблям травы.
Вода — это основное средство движения веществ в организме и клетке. Благодаря этому происходит обмен веществ между тканями.
Вода с растворенными в ней веществами изменяет температуру замерзания и кипения. Это свойство предотвращает замерзание клеток, организмов.
Источник
Классификация неорганических веществ
Химические вещества можно разделить на две неравные группы: простые и сложные.
Простые вещества состоят из атомов одного элемента (О2, P4).
Сложные вещества состоят из атомов двух и более элементов (CaO, H3PO4).
Простые вещества можно разделить на металлы и неметаллы.
Металлы – это простые вещества, в которых атомы соединены между собой металлической химической связью. Металлы стремятся отдавать электроны и характеризуются металлическими свойствами (металлический блеск, высокая электро- и теплопроводность, пластичность и др.).
Неметаллы – это простые вещества, в которых атомы соединены ковалентными (или межмолекулярными) связями. Неметаллы стремятся принимать или притягивать электроны. Неметаллические свойства – это способность принимать или притягивать электроны.
Все элементы в Периодической системе химических элементов (ПСХЭ) расположены либо в главной подгруппе, либо в побочной. В различных формах короткопериодной ПСХЭ главные и побочные подгруппы расположены по-разному. Есть простой способ, который позволит вам быстро и надежно определять, к какой подгруппе относится элемент. Дело в том, что все элементы второго периода расположены в главной подгруппе. Те элементы, которые расположены в ячейке точно под элементами второго периода (справа или слева), относятся к главной подгруппе. Остальные — к побочной.
Например , в таблице Менделеева, которая используется на ЕГЭ по химии, элемент номер 31, галлий, расположен в ячейке справа, точно под соответствующим ему элементом второго периода, бором. Следовательно, галлий относится к главной подгруппе. А вот скандий, элемент номер 21, расположен в ячейке слева. Следовательно, скандий относится к побочной подгруппе.
Неметаллы расположены в главных подгруппах, в правом верхнем угле ПСХЭ. К металлам относятся все элементы побочных подгрупп и элементы главных подгрупп, расположенные в левой нижней части ПСХЭ. Разделяют металлы и неметаллы обычно, проводя условную линию от бериллия до астата. На рисунке показано точное разделение на металлы и неметаллы. Закрашены цветом неметаллы.
Основные классы сложных веществ — это оксиды, гидроксиды, соли.
Оксиды — это сложные вещества, которые состоят из атомов двух элементов, один из которых кислород, имеющий степень окисления -2.
В зависимости от второго элемента оксиды проявляют разные химические свойства. Некоторым оксидам соответствуют гидроксиды (солеобразующие оксиды), а некоторым нет (несолеобразующие).
Солеобразующие оксиды делят на основные, амфотерные и кислотные.
Основные оксиды — это оксиды, которые проявляют характерные основные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +1 и +2 . Например, оксид лития Li2O, оксид железа (II) FeO.
Кислотные оксиды — это оксиды, которые проявляют кислотные свойства. К ним относят оксиды, образованные атомами металлов со степенью окисления +5, +6 и +7 , а также атомами неметаллов с любой степенью окисления . Например, оксид хлора (I) Cl2O, оксид хрома (VI) CrO3.
Амфотерные оксиды — это оксиды, которые проявляют и основные, и кислотные свойства. Это оксиды металлов со степенью окисления +3 и +4 , а также четыре оксида со степенью окисления +2: ZnO, PbO, SnO и BeO .
Несолеобразующие оксиды не проявляют характерных основных или кислотных свойств, им не соответствуют гидроксиды. К несолеобразующим относят четыре оксида: CO, NO, N2O и SiO .
Встречаются и оксиды, похожие на соли, т.е. солеобразные (двойные).
Двойные оксиды — это некоторые оксиды, образованные элементом с разными степенями окисления. Например , магнетит (магнитный железняк) FeO·Fe2O3.
Алгоритм определения типа оксида: сначала определяем, какой элемент образует оксид – металл или неметалл . Если это металл, то определяем степень окисления, затем определяем тип оксида. Если это неметалл, то оксид кислотный (если это не исключение).
Гидроксиды — это сложные вещества, в составе которых есть группа Э-O-H. К гидроксидам относятся основания, амфотерные гидроксиды, и кислородсодержащие кислоты.
Солеобразующим оксидам соответствуют гидроксиды:
основному оксиду соответствует гидроксид основание ,
кислотному оксиду соответствует гидроксид кислота ,
амфотерному оксиду соответствует амфотерный гидроксид .
Например , оксид хрома (II) CrO — основный, ему соответствует гидроксид основание. Формулу гидроксида легко получить, просто добавив к металлу гидроксидную группу OH: Cr(OH)2.
Оксид хрома (VI) — кислотный, ему соответствует гидроксид кислота H2CrO4, и кислотный остаток хромат-ион CrO4 2- .
Если все индексы кратны 2, то мы делим все индексы на 2.
Например : N2O5 + H2O → H2N2O6, делим на 2, получаем HNO3. Так получаем мета-формулу кислоты. Если мы добавим еще одну молекулу воды, то получим орто-формулу кислоты.
Например : оксид P2O5, мета-форма: HPO3. Добавляем воду, орто-форма: H3PO4. Орто-форма устойчива у фосфора и мышьяка.
Оксид хрома (III) — Cr2O3 — амфотерный, ему соответствует амфотерный гидроксид, который может выступать и как основание, и как кислота: Cr(OH)3 = HCrO2, кислотный остаток хромит: CrO2 — .
Взаимосвязь оксидов и гидроксидов:
Основания (основные гидроксиды) — это сложные вещества, которые при диссоциации в водных растворах в качестве анионов (отрицательных ионов) образуют только гидроксид-ионы OH — .
Основания можно разделить на растворимые в воде ( щелочи ), нерастворимые в воде, и разлагающиеся в воде .
К разлагающимся в воде (неустойчивым) основаниям относят гидроксид аммония, гидроксид серебра (I), гидроксид меди (I). В водном растворе такие соединения практически необратимо распадаются:
2AgOH → Ag2O + H2O
2CuOH → Cu2O + H2O
Основания с одной группой ОН – однокислотные (например, NaOH ) , с двумя – двухкислотные (Ca(OH)2) и с тремя – трехкислотные (Fe(OH)3) .
Кислоты – это сложные вещества, которые при диссоциации в водных растворах образуют в качестве катионов только ионы гидроксония H3O + (H + ). Кислоты состоят из водорода H + и кислотного остатка.
По числу атомов водорода, которые можно заместить на металлы: одноосновные (HNO3), двухосновные (H2SO4), трехосновные (H3PO4) и т.д.
По содержанию атомов кислорода кислоты бывают бескислородные ( например , соляная кислота HCl) и кислородсодержащие ( например , серная кислота H2SO4).
Кислоты также можно разделить на сильные и слабые.
Сильные кислоты. К ним относятся:
- Бескислородные кислоты: HCl, HBr, HI . Остальные бескислородные кислоты, как правило, слабые.
- Некоторые высшие кислородсодержащие кислоты: H2SO4, HNO3, HClO4 и др.
Слабые кислоты . К ним относятся:
- Слабые и растворимые кислоты : это H3PO4, CH3COOH, HF и др.
- Летучие или неустойчивые кислоты : H2S — газ; H2CO3 — распадается на воду и оксид: H2CO3 → Н2О + СО2↑; H2SO3— распадается на воду и оксид: H2SO3 → H2O+ SО2↑.
- Нерастворимые в воде кислоты : H2SiO3 и другие.
Определить, сильная кислота перед вами, или слабая, позволяет простой прием. Мы вычитаем из числа атомов O в кислоте число атомов H. Если получаем число 2 или 3, то кислота сильная. Если 1 или 0 — то кислота слабая.
Например : HClO: 1-1 = 0, следовательно, кислота слабая.
Соли – сложные вещества, состоящие из катиона металла (или металлоподобных катионов, например, иона аммония NH4 + ) и аниона кислотного остатка. Также солями называют вещества, которые могут быть получены при взаимодействии кислот и оснований с выделением воды.
Если рассматривать соли, как продукты взаимодействия кислоты и основания, то соли делят на средние , кислые и основные .
Средние соли – продукты полного замещения катионов водорода в кислоте на катионы металла ( например , Na2CO3, K3PO4).
Кислые соли – продукты неполного замещения катионов водорода в кислоте на катионы металлов ( например , NaHCO3, K2HPO4).
Основные соли – продукты неполного замещения гидроксогрупп основания на анионы кислотных остатков кислоты ( например , малахит (CuOH)2CO3).
По числу катионов и анионов соли разделяют на:
Простые соли – состоящие из катиона одного типа и аниона одного типа ( например , хлорид кальция CaCl2).
Двойные соли – это соли, состоящие из двух или более разных катионов и аниона одного типа ( например , алюмокалиевые квасцы – KAl(SO4)2).
Смешанные соли – это соли, состоящие из катиона одного типа и двух или более анионов разного типа ( например , хлорид-гипохлорит кальция Ca(OCl)Cl).
По структурным особенностям выделяют также гидратные соли и комплексные соли.
Гидратные соли (кристаллогидраты) – это такие соли, в состав которых входят молекулы кристаллизационной воды ( например , декагидрат сульфата натрия Na2SO4·10 H2O).
Комплексные соли – это соли, содержащие комплексный катион или комплексный анион (K3[Fe(CN)6], [Cu(NH3)4]Cl2).
Помимо основных классов неорганических соединений, существуют и другие.
Например , бинарные соединения элементов с водородом.
Водородные соединения – это сложные вещества, состоящие из двух элементов, один из которых водород. Водород образует солеобразные гидриды и летучие водородные соединения.
Солеобразные гидриды ЭНх – это соединения металлов IA, IIA групп и алюминия с водородом. Степень окисления водорода равна -1. Например , гидрид натрия NaH.
Летучие водородные соединения НхЭ – это соединения неметаллов с водородом, в которых степень окисления водорода равна +1. Например , аммиак NH3, фосфин PH3.
Источник