Вода которая не замерзает благодаря

Содержание
  1. Почему вода не замерзает под слоем льда?
  2. Почему лед не тонет?
  3. Могут ли живые организмы выжить во льду?
  4. Может ли замерзнуть океан?
  5. Вода, которая никогда не замерзает
  6. ЧИП — 2021- Мир воды — 9-11 класс — вопросы и ответы
  7. Вопросы и ответы на международный конкурс Человек и Природа 2021 для 9-11 классов
  8. 1. На каком изображении глобуса выделен Южный океан?
  9. 2. Через какой океан проходит линия перемены дат?
  10. 3. Самая глубокая часть мирового океана ..
  11. 4. Пролив (проход) Дрейка соединяет… океаны.
  12. 5. На фотографиях — разные события в круговороте воды в природе. На какой фотографии изображена сублимация?
  13. 6. Какое из химических названий не относится к воде?
  14. 7. Хитрого и изворотливого человека может характеризовать такая пословица.
  15. Физики доказали, что вода может существовать в нескольких жидких состояниях
  16. Скрытое многообразие форм воды

Почему вода не замерзает под слоем льда?

Вода — самое таинственное и при этом самое важное для поддержания жизни на планете вещество. У нее нет ни запаха, ни цвета, однако существование какой-либо жизни в том виде, в котором мы ее знаем, без воды попросту бы свелось к нулю. Одним из уникальных качеств воды является ее способность сохранять подводную жизнь благодаря интересной природной аномалии, при которой лед покрывает собой массы воды, не давая ей полностью замерзнуть. Согласно обычным физическим законам, все должно происходить в точности до наоборот и вещество, находящееся долгое время в твердой форме, должно быть на дне, а не на поверхности. Так почему же вода нарушает основные законы физики?

Возможно, жизнь на планете появилась благодаря природной аномалии

Почему лед не тонет?

Считается, что уникальная способность льда не уходить под воду обусловлена появлением в нем особенной кристаллической решетки, которая часто обогащена мельчайшими пузырьками воздуха. Ледяной покров, постепенно расползаясь от берегов водоема к самому его центру, надежно защищает всех обитателей от сильных морозов, сохраняя положительную температуру под ледяным куполом.

Читайте также:  Бурый рис красит воду

Теоретически, любой, даже самый большой водоем, может промерзнуть до самого дня при соблюдении определенных природных и температурных условий. В обычное же время даже небольшой пруд с максимальной глубиной около трех метров не способен промерзнуть до самого дна по причине, что при достижении водой критической отметки в +4 градуса по Цельсию, в пруде/озере/реке и других аналогичных водоемах начинается интенсивный процесс перемещения слоев разной температуры. Наиболее холодные водные слои постепенно поднимаются вверх, в то время как теплые начинают опускаться вниз. С понижением средней температуры, на поверхности водоема постепенно образуется лед, который останавливает процесс перемещения слоев воды разной температуры и не дает подледному миру полностью замерзнуть.

Могут ли живые организмы выжить во льду?

Несмотря на то, что для человеческого организма долгое нахождение в условиях низких температур чревато гибелью, для некоторых амфибий не страшны даже очень длительные морозы. Так, лягушки и тритоны обладают уникальной способностью вмерзать прямо во лед без каких-либо последствий для своего здоровья. Обычные прудовые лягушки в холодное время года впадают в анабиоз и самостоятельно размораживаются только с первыми лучами теплого солнца. Такую природную сверхспособность амфибии получили в результате длительной эволюции, которая подарила их организмам особый природный антифриз. Наличие антифриза в теле лягушки позволяет предотвратить образование мельчайших кристалликов льда, которые и являются основной причиной гибели живых клеток.

Некоторые лягушки могут зимовать прямо во льду

Может ли замерзнуть океан?

Как уже говорилось выше, при соблюдении современных климатических условий, даже самый неглубокий пруд не способен полностью промерзнуть. Однако давайте попробуем себе представить, что в результате некоего природного катаклизма на Земле промерзли до дна все океаны. Может ли такое произойти в действительности?

Брайникл или подводная “сосулька смерти” способна моментально уничтожить все живое в ее окрестности

Известно, что температура замерзания соленой воды зависит от уровня ее солености. Так, при среднем количестве содержания морской соли в воде, обычной температурой, при которой океан начинает покрываться тонкой коркой льда, становятся примерно -2…-4 градуса по Цельсию. Несмотря на то, что наша планета в разные эпохи переживала множество больших и малых ледниковых периодов, океаны нашей планеты никогда не промерзали до самого дна. Теплые океанические течения даже в самые холодные годы Земли помогали поддерживать морскую воду в жидком состоянии. Иными словами, возможность того, что однажды океаны планеты полностью замерзнут, сводится к абсолютному нулю.

Кстати говоря, знаете ли вы, что на Плутоне имеется свой подледный океан жидкой воды? Если уж такой далекий объект смог сохранить свои водные ресурсы в жидком состоянии, то нашей планете в этом плане не о чем переживать. В любом случае, давайте попробуем пофантазировать в нашем Telegram-чате, что могло бы произойти с человечеством в случае, если бы океаны нашей планеты каким-то образом все же полностью замерзли.

Источник

Вода, которая никогда не замерзает

Сделать кубики льда очень просто: берем обычный пластиковый лоток для кубиков льда, наполняем его водой и ставим в морозильник. Вскоре вода кристаллизуется и превращается в лед. Если проанализировать структуру кристаллов льда, мы увидим, что молекулы воды расположены в виде правильных решетчатых структур. В воде же, напротив, молекулы расположены не в строгом порядке, хоть и близко друг к другу: иначе вода не могла бы течь.

А что, если бы вода никогда не превращалась в лед? И возможно ли это?

«Стеклянная» вода

Группа физиков и химиков из Швейцарской высшей технической школы Цюриха (ETH Zurich) и Цюрихского университета во главе с профессорами Раффаэле Мецценга (Raffaele Mezzenga) и Эхудом Ландау (Ehud Landau) нашла необычный способ, который мешает воде кристаллизоваться, сообщается на сайте ETH. При экстремальных минусовых температурах – даже при -263 градусах по Цельсию – вода сохраняет характеристики жидкости.

По порядку – о поиске нового метода. На первом этапе исследователи разработали и синтезировали новый класс липидов (молекул жира) для создания новой формы «мягкой» биологической субстанции, известной как липидная мезофаза. Мезофазой называется агрегатное состояние вещества, промежуточное между жидкостью и твердым телом. Самый известный пример мезофазы – желатин. В этом материале липиды самопроизвольно собираются и объединяются, образуя мембраны, которые ведут себя так же, как молекулы натурального жира. Эти мембраны затем формируют сети соединенных каналов диаметром менее одного нанометра. Температура и количество воды, а также новая структура разработанных липидных молекул определяют структуру, которую принимает липидная мезофаза.

Затем воду смешали с липидной мезофазой. Используя жидкий гелий, исследователи смогли охладить липидную мезофазу, состоящую из химически модифицированного моноацилглицерина, до температуры -263 градуса по Цельсию (что всего на 10 градусов выше абсолютного «нуля»), и кристаллы льда не образовались. При этой температуре вода стала «стеклообразной», что исследователи смогли продемонстрировать и подтвердить при моделировании. В отличие от пластикового лотка для кубиков льда с крупными «лунками», в узких каналах липидной мезофазы нет места для образования кристаллов льда, поэтому вода остается беспорядочной даже при экстремальных минусовых температурах. Липиды тоже не замерзают. Результаты исследования этого необычного поведения воды, когда она заключена в липидную мезофазу, были описаны в статье, опубликованной в журнале Nature Nanotechnology.

«Ключевым фактором является соотношение липидов и воды», – объясняет профессор Раффаэле Мецценга из Лаборатории пищевых и мягких материалов в ETH Zurich. Соответственно, именно содержание воды в смеси определяет температуру, при которой изменяется геометрия мезофазы. Если, например, смесь содержит 12% воды, структура мезофазы будет переходить при температуре около -15 градусов Цельсия из кубической решетки в пластинчатую структуру.

Естественный «антифриз» для бактерий

«Что делает разработку этих липидов настолько сложной, так это их синтез и очистка», – говорит Эхуд Ландау, профессор химии в Цюрихском университете. Так происходит потому, что молекулы липидов состоят из двух частей: одна является гидрофобной (отталкивает воду), а другая – гидрофильной (наоборот, притягивает воду). С ними чрезвычайно сложно работать, отмечает ученый.

Мягкий биоматериал, образованный из липидных мембран и воды, имеет сложную структуру, которая сводит к минимуму контакт воды с гидрофобными частями и максимизирует ее взаимодействие с гидрофильными частями.

Исследователи смоделировали новый класс липидов на мембранах определенных бактерий. Эти бактерии также вырабатывают особый класс самоорганизующихся липидов, которые могут естественным образом ограничивать количество воды в их внутреннем пространстве, позволяя микроорганизмам выживать в очень холодных условиях.

У нового класса тоже есть свой хитрый механизм. Новизна этих липидов заключается в том, что молекулы гидрофобных частей липидов образуют маленькие кольца, которые создают необходимую «кривизну» для образования крошечных водяных каналов и предотвращают кристаллизацию липидов.

Мягкая материя для исследований

Для чего понадобятся липидные мезофазы, которые не дают воде замерзнуть? Главным образом, они будут служить инструментом для других исследователей. Например, для биологов, которые изучают структуру и функции крупных биомолекул, таких как белки или крупные молекулярные комплексы. Обычно такие образцы помещают в быстро охлажденную воду, чтобы сохранить их и в дальнейшем изучить. Но как только они превращаются в ледяные кристаллы, разрушаются их мембраны и важные составляющие молекул.

Существует метод витрификации – «стеклования» живых клеток. В криобиологии этот термин используют для обозначения метода сверхбыстрого замораживания живых образцов. Криопротекторный раствор, в котором находятся живые объекты, не кристаллизуется при охлаждении, а переходит в стекловидное состояние. Этот метод активно используют при криоэлектронной микроскопии, которая помогает изучить структуры биомеолекул в растворах. Новый способ, который использует липидные мезофазы, может стать альтернативой при подобных исследованиях.

«Наше исследование прокладывает путь для будущих проектов, чтобы определить, как белки могут сохраняться в своей первоначальной форме и взаимодействовать с липидными мембранами при очень низких температурах», – говорит профессор Швейцарской высшей технической школы Цюриха.

Источник

ЧИП — 2021- Мир воды — 9-11 класс — вопросы и ответы

Сегодня, 21 октября 2021, в очередной раз проводиться международный конкурс Человек и природа для школьников разных классов.

В данной статье мы предлагаем вам ознакомиться с заданиями и решить их вместе.

Если знаете ответ, увидели ошибку? Пишите в комментариях

Вопросы и ответы на международный конкурс Человек и Природа 2021 для 9-11 классов

  • Задания, оцениваемые в 3 балла

1. На каком изображении глобуса выделен Южный океан?

2. Через какой океан проходит линия перемены дат?

Г Северный ледовитый;

3. Самая глубокая часть мирового океана ..

А) Впадина Тонга;

Б) Филиппинская впадина;

В) Марианская впадина;

Г) Впадина Палау;

Д) Впадина Кермадек.

4. Пролив (проход) Дрейка соединяет… океаны.

А Северный Ледовитый и Тихий:

Б Атлантический и Тихий

В Северный ледовитый и Атлантический;

Г Атлантический и Индийский:

Д Индийский и Тихий

5. На фотографиях — разные события в круговороте воды в природе. На какой фотографии изображена сублимация?

6. Какое из химических названий не относится к воде?

А гидроксид водорода:

Б гидроксильная кислота:

Г монооксид дигидрогена;

Д пероксид водорода.

7. Хитрого и изворотливого человека может характеризовать такая пословица.

А Вода усталости не знает.

Б Всякая вода берега имеет.

В Глубокая вода не мутится.

Г Он из воды сухой выйдет

Д молчит, словно воды в рот набрал.

Ответ: Он из воды сухой выйдет

Источник

Физики доказали, что вода может существовать в нескольких жидких состояниях

ТАСС, 19 ноября. Американские ученые впервые получили переохлажденную воду, которая не замерзает при температуре –68 °С. Ее изучение позволило доказать, что вода на самом деле состоит как минимум из двух разных типов жидкости, обладающих разными физическими свойствами. Статью с описанием исследования опубликовал научный журнал Science.

«Пытаясь объяснить некоторые аномальные свойства воды при помощи расчетов на суперкомпьютерах, теоретики еще 30 лет назад предположили, что жидкая вода может существовать в двух разных состояниях. Эта противоречивая гипотеза была одним из самых важных вопросов в химии и физике воды, который не удавалось долго решить», – рассказал один из авторов исследования, профессор Городского университета Нью-Йорка (США) Николас Джовамбаттиста.

Долгое время ученые считали, что у воды есть лишь одно жидкое состояние. Эти представления начали меняться на рубеже веков, когда ученые обнаружили, что пространственная структура и некоторые физические свойства молекул воды зависят от того, в какую стороны «повернуты спины атомов водорода», а также раскрыли различия в химических свойствах двух подобных пространственных форм молекул воды, параводы и ортводы.

Аналогичным образом ученые при проведении экспериментов с водой, охлажденной до сверхнизких температур, предположили, что вода может существовать в жидком виде в двух разных формах, фазовых состояниях, обладающих сравнительно низкой и высокой плотностью. Трудности с их отделением друг от друга породили массу споров о том, существуют ли эти состояния в реальности или только в теории.

Скрытое многообразие форм воды

Эти проблемы, как объясняет профессор Джовамбаттиста, связаны с тем, что теория предсказывает, что вода будет находиться в двух четко отделимых фазовых формах только при сверхнизких температурах (около –60 °С), при которых она находится в так называемом переохлажденном виде.

Как правило, воду можно удерживать в жидком состоянии при температурах, не превышающих –48 °С, если удалить из нее все примеси и охлаждать ее очень быстро. В теории вода может оставаться жидкостью и при более низких температурах, составляющих около минус 70 градусов Цельсия, однако добиться этого крайне сложно.

Американские физики решили эту проблему, не охлаждая воду, а особым образом нагревая аморфный лед высокой плотности при помощи инфракрасного лазера, способного вырабатывать очень мощные, но при этом сверхкороткие импульсы теплового излучения.

Данные вспышки света были настолько непродолжительными, что плотность образца воды не менялась при таянии льда, что впервые позволило ученым увидеть то, как формируется вода высокой плотности и проследить за ее превращением — фазовым переходом — в воду легкой плотности, подсвечивая растаявший лед при помощи рентгеновского лазера.

Эти наблюдения подтвердили, что оба типа жидкостей обладают разными свойствами, а также показали, что плотная вода была примерно на 20% тяжелее, чем ее легкая разновидность. При определенных условиях, как показывают расчеты Джовамбаттисты и его коллег, обе формы переохлажденной воды не будут смешиваться друг с другом. Иными словами они будут взаимодействовать примерно так же, как обычная вода и масло, формирующие два четких слоя, если их налить в один и тот же сосуд.

«Пока не понятно, как присутствие двух типов воды будет влиять на поведение различных растворов и реакций между ними, в том числе и внутри живых организмов. Это толкает нас на проведение новых экспериментов с этими фазовыми состояниями жидкой воды», — подытожил профессор.

Источник

Оцените статью