- Вода: строение и свойства
- Физические свойства
- Химические свойства
- Химия
- Физические свойства металлов
- Физические свойства неметаллов
- Расположение металлов и неметаллов в периодической таблице Д.И. Менделеева
- Закономерности в таблице Д.И. Менделеева
- Способы получения металлов
- Химические свойства металлов
- Способы получения неметаллов
- Химические свойства неметаллов
- Коррозия металла
- Химическая коррозия
- Электрохимическая коррозия
- Способы защиты от коррозии
- Биологическая роль металлов и неметаллов
- Применение металлов и неметаллов
- Все химические реакции, которые необходимы для успешной сдачи ОГЭ
- Правило 1.1. Взаимодействие простых веществ (металлов и неметаллов) с водой
- Правило 1.2. Взаимодействие оксидов с водой
- Виды простых и сложных веществ
- Простые и сложные вещества в химии
- Классификация простых веществ
- Классы и номенклатура неорганических веществ
- Строение и химические свойства
- Химические свойства металлов и неметаллов
- Химические свойства благородных газов
- Строение и основные химические свойства сложных веществ
Вода: строение и свойства
Вода — строение молекулы, химические и физические свойства. Взаимодействие с простыми веществами (металлами и неметаллами), и со сложными веществами.
Физические свойства
Молекулы воды связаны водородными связями: nH2O = (Н2O)n, поэтому вода жидкая в отличие от ее газообразных аналогов H2S, H2Se и Н2Те.
Химические свойства
1. Вода реагирует с металлами и неметаллами .
1.1. С активными металлами вода реагирует при комнатной температуре с образованием щелочей и водорода :
2Na + 2H2O → 2NaOH + H2
- с магнием реагирует при кипячении:
- алюминий не реагирует с водой, так как покрыт оксидной плёнкой. Алюминий, очищенный от оксидной плёнки, взаимодействует с водой, образуя гидроксид:
- металлы, расположенные в ряду активности от Al до Н , реагируют с водяным паром при высокой температуре, образуя оксиды и водород:
- металлы, расположенные в ряду активности от после Н , не реагируют с водой:
Ag + Н2O ≠
2. Вода реагирует с оксидами щелочных и щелочноземельных металлов , образуя щелочи (с оксидом магния – при кипячении):
3. Вода взаимодействует с кислотными оксидами (кроме SiO2):
4. Некоторые соли реагируют с с водой. Как правило, в таблице растворимости такие соли отмечены прочерком :
Например , сульфид алюминия разлагается водой:
5. Бинарные соединения металлов и неметаллов , которые не являются кислотами и основаниями, разлагаются водой.
Например , фосфид кальция разлагается водой:
6. Бинарные соединения неметаллов также гидролизуются водой.
Например , фосфид хлора (V) разлагается водой:
6. Некоторые органические вещества гидролизуются водой или вступают в реакции присоединения с водой (алкены, алкины, алкадиены, сложные эфиры и др.).
Источник
Химия
Лучшие условия по продуктам от Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Физические свойства металлов
Металлы – химические элементы, атомы которых в процессе реакции стремятся отдавать электроны. Они обладают металлической кристаллической решеткой и общими физическими свойствами. На данный момент известно более 87 металлов.
Для металлов характерен ряд свойств:
- твердость (кроме ртути, которая представляет собой жидкость);
- металлический блеск;
- проводимость электрического тока и тепла;
- пластичность.
Металлы при ударах не разрушаются, а меняют форму. С этой особенностью связано то, что из них производят проволоку, металлические листы и др. Развитие бронзового и железного века связано с производством товаров из металлов.
Физические свойства неметаллов
Неметаллы – химические элементы, атомы которых стремятся принять чужие электроны. Для них характерны атомные и молекулярные кристаллические решетки. Для атомов неметаллов не характерны общие физические свойства. На данный момент существует 22 неметалла.
Для неметаллов характерен ряд свойств:
- хрупкость (неметаллы нельзя ковать);
- отсутствие блеска;
- непроводимость электрического тока и тепла.
Расположение металлов и неметаллов в периодической таблице Д.И. Менделеева
Определить, является простое вещество металлом или неметаллом, можно с помощью периодической таблицы Менделеева. Металлы располагаются ниже диагонали «водород-бор- кремний-мышьяк-теллур-астат», а неметаллы выше.
Красные ячейки – неметаллы, синие – металлы
Элементы, расположенные вблизи диагонали, обладают смешанными свойствами: проявляют как металлические, так и неметаллические свойства. Они называются полуметаллами.
Красные ячейки – полуметаллы
Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной ковалентной связи, либо они не удерживаются достаточно прочно из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.
Закономерности в таблице Д.И. Менделеева
Каждый атом состоит из протонов, нейтронов и электронов. Протоны и нейтроны находятся в ядре, который несет положительный заряд. Вокруг ядра движутся отрицательно заряженные электроны. Атомный номер указывает на количество протонов.
Чем больше заряд ядра, тем сильнее к нему притягиваются электроны. Т.о., атому сложнее отдавать электроны. Поэтому в периоде слева направо, с увеличением порядкового номера металлические свойства ослабевают, а неметаллические – усиливаются.
Неметаллы стремятся принять электроны от других атомов. Период в таблице указывает на количество электронных уровней. По мере увеличения числа орбиталей электроны отдаляются от ядра и атому сложнее удерживать электроны на последних уровнях. Т.о., в группе сверху вниз количество орбиталей возрастает, поэтому металлические свойства усиливаются, а неметаллические – уменьшаются.
Способы получения металлов
Большую часть металлов получают из оксидов при нагревании.
Металлы, имеющие на внешнем уровне один-два электрона, получают с помощью электролиза расплавов.
Химические свойства металлов
Все металлы проявляют восстановительные свойства. Легкость в отдачи внешнего электрона применяется в фотоэлементах. Степень активности определяется рядом активности. У самых активных на внешнем уровне располагается по одному электрону.
Общие химические свойства металлов выражаются в реакциях со следующими соединениями.
Активные металлы реагируют с галогенами и кислородом. С азотом взаимодействуют только литий, кальций и магний. Большинство металлов при взаимодействии с кислородом образуют оксиды, а наиболее активные металлы – пероксиды (N2O2).
2 Ca + MnO2 → 2 CaO + Mn(нагревание)
Водород в кислотах вытесняют только те металлы, которые в ряду напряжений стоят до водорода.
Более активные металлы вытесняют из соединений менее активные.
- Химические свойства щелочных и щелочно-земельных металлов (реакции с водой)
2 Na + 2 H2O → 2 NaOH + H2
Способы получения неметаллов
Неметаллы синтезируют из природных соединений с помощью электролиза.
2 KCl → 2 K + Cl2
Также неметаллы получают в результате окислительно-восстановительных реакций.
SiO2 + 2 Mg → 2 MgO + Si
Химические свойства неметаллов
Неметаллы проявляют окислительные свойства. Самый активный неметалл – фтор. Он бурно реагирует со всеми веществами, а некоторые реакции сопровождаются горением и взрывом. В атмосфере фтора горят даже вода и платина. Фтор окисляет кислород и образует фторид кислорода OF2.
Неметаллы вступают в реакции со следующими веществами.
3 F + 2 Al → 2 AlF3 (нагревание)
S + Fe →FeS (нагревание)
Меньшей активностью обладают такие неметаллы как бор, графит, алмаз. Они могут проявлять восстановительные свойства.
2 C + MnO2 → Mn + 2 CO
Коррозия металла
Коррозия – это процесс разрушения металлов или металлических конструкций под действием кислорода, воды и вредных примесей. Не все металлы подвергаются коррозии. Их стойкость зависит от ряда факторов.
- На благородных металлах не образуется коррозия.
- На поверхности алюминия, титана, цинке, хрома и никеля есть оксидная пленка, которая предотвращает процессы коррозии.
Различают несколько видов коррозии – химическую и электрохимическую.
Химическая коррозия
Химическая коррозия сопровождается химическими реакциями. Она образуется под действием газов.
Электрохимическая коррозия
Электрохимическая коррозия – процесс разрушения металлов или металлических конструкций, который сопровождается электрохимическими реакциями. В большинстве металлов находятся примеси. В процессе коррозии электродами могут служить не только металлы, но и его примеси.
Например, в железе могут находиться примеси олова. В этом случае на аноде электроны переносятся от олова к железу и металлы растворяются, т.е. железо подвергаются коррозии. На катоде восстанавливается водород из воды или растворенного кислорода. Электрохимическая коррозия может сопровождаться следующими процессами.
Анод: Fe 2+ — 2e → Fe 0
Катод: 2H + + 2e → H2
Способы защиты от коррозии
В промышленности популярны различные методы защиты металлов от коррозии.
Покрытия защищают поверхности от действия окислителей. Ими служат различные вещества:
- покрытие менее активным металлом (железо покрывают оловом);
- краски, лаки, смазки.
- Создание специальных сплавов
Физические свойства сплавов и чистых металлов отличаются. Поэтому для повышения стойкости в сплав необходимо добавить дополнительные металлы.
Биологическая роль металлов и неметаллов
В организмах содержится множество различных металлов и неметаллов. Различных химических элементов в организме может не хватать, поэтому приходится потреблять их извне.Химические элементы можно разделить на две большие группы – макроэлементы и микроэлементы.
К макроэлементам относятся вещества, содержание которых в организме превышает 0,005 %. Эта группа включает водород, углерод, кислород, азот, натрий, магний, фосфор, сера, хлор, калий, кальций.Микроэлементы – элементы, содержание которых не превышает 0,005%. К ним относятся железо, медь, селен, йод, хром, цинк, фтор, марганец, кобальт, молибден, кремний, бром, ванадий, бор. Каждый макро- и микроэлемент в организме выполняет определенную функцию.
Применение металлов и неметаллов
В синтезе химических препаратов и лекарств применяются чистые металлы и неметаллы. В органической химии металлы используются в качестве катализаторов, а также при получении металлорганических соединений. Неметаллы служат исходным сырьем для получения чистых кислот и других химических соединений.
Источник
Все химические реакции, которые необходимы для успешной сдачи ОГЭ
Правило 1.1. Взаимодействие простых веществ (металлов и неметаллов) с водой
1) Щелочные (Li-Fr) и щелочноземельные (Ca-Ra) металлы взаимодействуют с водой при комнатной температуре с образованием щелочи (растворимого основания) и выделением водорода. Например:
2) Магний также взаимодействует с водой, но при сильном нагревании и с образованием нерастворимого гидроксида:
3) Алюминий реагирует с водой, но только если убрать оксидную пленку:
4) Металлы, находящиеся в ряду активности от Zn (включительно) до Pb (включительно), взаимодействуют с парами воды (т.е. при температуре выше 100°С), при этом образуются оксиды соответствующих металлов и водород:
5) Металлы, стоящие в ряду активности правее водорода, с водой не взаимодействуют даже при нагревании.
Cu + H2O → реакция не идет.
6) Из неметаллов с водой реагируют галогены, C и Si при высоких температурах:
Правило 1.2. Взаимодействие оксидов с водой
1) Основные оксиды щелочных и щелочноземельных металлов реагируют с водой при комнатной температуре с образованием соответствующих щелочей:
2) Амфотерные оксиды не реагируют с водой и не растворяются в ней.
ZnO + H2O → реакция не идет.
3) Кислотные оксиды взаимодействуют с водой с образованием соответствующих кислот: P2O5 + 3H2O → 2H3PO4
Только в случае NO2 образуются две кислоты:
2NO2 + H2O → HNO2 + HNO3 и, как следствие, при взаимодействии с щелочами образуются две соли (нитраты и нитриты соответствующего металла):
SiO2 + H2O → реакция не идет.
Источник
Виды простых и сложных веществ
Простые и сложные вещества в химии
В неорганической химии вещества по составу делятся на простые и сложные.
- состоят из атомов одного химического элемента: сера S, углерод С, железо Fe, серебро Ag;
- подразделяют на металлы и неметаллы (включая благородные газы).
Сложные вещества — соединения:
- состоят из атомов двух или более химических элементов: Na2O, HCl, CuSO4;
- подразделяют на: оксиды, основания, кислоты и соли.
Классификация простых веществ
1. Простые вещества условно делят на две группы: металлы и неметаллы.
Неметаллы в Периодической системе — это все элементы VIII А-группы (благородные газы) и VII А-группы (галогены), элементы VI А-группы (кроме полония), элементы V А-группы: азот, фосфор, мышьяк; углерод, кремний (IV А-группа); бор (III А-группа), а также водород. Остальные элементы относят к металлам.
Отличия свойств металлов и неметаллов приведены в таблице 1:
металлы | неметаллы | ||
Тип химической связи | металлическая | ковалентная неполярная | |
Кристаллическая решётка | металлическая | атомная или молекулярная | |
Физические свойства | Агрегатное состояние | твёрдые, кроме жидкой ртути Hg |
|
Блеск | металлический блеск | не обладают блеском (исключение: йод J2 и графит) | |
Способность проводить тепло и электрический ток | хорошие проводники | плохо проводят тепло, не проводят ток — диэлектрики (исключение: графит, кремний Si и черный фосфор) | |
Прочность, ковкость, пластичность | характерно для всех металлов (исключение: хром Cr, марганец Mn, сурьма Sb) | в твердом состоянии хрупкие | |
Цвет | серебристо-белый, серебристо-серый (исключение: красная медь Cu, желтое золото Au и некоторые др.) | разный: почти черный йод J2, желтая сера S, черный, белый и красный фосфор P, бесцветные кислород O2, азот N2 | |
Способность к аллотропии | слабая; некоторые металлы: железо Fe, олово Sn, лантаноиды и актиноиды. | хорошая; много модификаций у углерода С (графит, фуллерен, алмаз, карбин и др.); фосфора P (белый, чёрный, красный); серы S (кристаллическая, пластическая) | |
Аллотропия — способность некоторых элементов существовать в виде двух или нескольких простых веществ (аллотропных модификаций), отличающихся по строению и свойствам. |
Амфотерные элементы находятся в А-группах Периодической системы: бериллий Be, алюминий Al, галлий Ga, германий Ge, олово Sn, свинец Pb, сурьма Sb, висмут Bi, полоний Po и др., а также большинство элементов Б-групп: хром Cr, марганец Mn, железо Fe, цинк Zn, кадмий Cd, золото Au и др., проявляют и металлические (оснóвные для соединений), и неметаллические (кислотные для соединений) свойства.
Благородные (инертные) газы (VIII А-группа Периодической системы): гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радиоактивный радон Rn:
- обнаруживаются в воздухе, в малых количествах — в воде, горных породах, природных газах;
- не имеют цвета, вкуса и запаха;
- крайне химически инертны;
- используются в источниках света для создания освещения различных цветов (Ne — огненно-красный, Xe— синевато-серый, тусклый, Ar — фиолетово-голубой и др).
2. Сложные соединения и их отличия от простых веществ.
Сложные вещества бывают органические, в основе которых лежит углерод, и неорганические (безуглеродные и некоторые углеродсодержащие соединения: карбиды, карбонаты, оксиды углерода и другие). Неорганические чаще всего подразделяют на оксиды, основания, кислоты и соли.
Главные отличия сложных неорганических веществ:
- Свойства элементов, входящих в соединение, не сохраняются. Например, металл кальций Ca и неметалл хлор Cl2. Каждому из этих простых веществ присущи свои характеристики. А соль CaCl2 имеет новые, отличные от характеристик простых веществ, свойства, сходные со свойствами класса солей.
- В ходе химических реакций сложное вещество может быть получено или разложено на составные части.
- Количественный состав сложного соединения всегда одинаков, независимо от места нахождения и способа получения (для веществ молекулярного состава).
Классификация неорганических соединений и их основные свойства приведены в таблице 2.
Оксиды | Основания | Кислоты | Соли | |
Составляющие | Элемент Э+кислород со степенью окисления -2 | Катион металла+гидроксид-анион OH- | атом водорода, способный замещаться на металл+кислотный остаток K | катион металла Me+анион кислотного остатка K |
Формула | ЭnOm | Me+n(OH-)n | HnК | Me+nK-m |
Примеры | Li2O, MgO, Fe2O3, CO2 | KOH, Ca(OH)2, Al(OH)3 | HCl, H2SO4, H3PO4 | NaNO3, CaCO3, Al2(SO4)3 |
Агрегатное состояние |
| твёрдые: NaOH, Mg(OH)2 |
| твёрдые: KNO3, CaCO3, NaCl |
По составу бывают: |
|
|
|
|
Классы и номенклатура неорганических веществ
Номенклатура — способ называния веществ.
Химическая формула — представление состава вещества с использованием символов химических элементов, числовых индексов и других знаков. Химическое название определяется составом вещества и изображается с помощью слова или группы слов. Названия строятся по номенклатурным правилам, с использованием русских названий элементов, кроме случаев, когда традиционно употребляются латинские корни (таблица 3):
Ag — аргент | C — карб, карбон | H — гидр, гидроген | N — нитр | Pb — плюмб, | Si — сил, силик, силиц |
As — арс, арсен | Cu — купр | Hg — меркур | Ni — никкол | S — сульф | Sn -станн |
Au — аур | Fe — ферр | Mn — манган | O — окс, оксиген | Sb — стиб | |
Например, оксид натрия Na2O, карбонат кальция CaCO3, перманганат калия KMnO4 |
- Названия простых веществ чаще всего совпадают с русскими названиями соответствующих химических элементов. По необходимости к ним добавляется числовая греческая приставка: моно — 1, ди (латинский) — 2, три — 3, тетра — 4, пента — 5, гекса — 6, гепта — 7, окта — 8, нона (латинский) — 9, дека — 10. Например, (моно) кальций Ca, (моно) медь Cu, дикислород O2, трикислород O3, тетрафосфор P4. Исключение: аллотропные модификации: углерода С — графит, сажа, алмаз; кислорода — озон O3.
- Названия сложных веществ составляют по химической формуле справа налево. Для каждого класса веществ существуют свои правила составления формул и названий:
- формула оксидов: ЭnOm, где n и m — числовые индексы, определяющиеся степенями окисления элементов. Например,
Li+1 и O-2→ Li2O; Al+3 и O-2→ Al2O3; N+5 и O-2→ N2O5.
Название оксида: слово «оксид» в именительном падеже + название элемента Э в родительном падеже: оксид лития Li2O, оксид алюминия Al2O3.
Если элемент образует несколько оксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:
- P2O5 — пентаоксид (ди)фосфора или оксид фосфора (V), читается: «оксид фосфора пять»;
- Fe2O3 — триоксид (ди)железа или оксид железа (III), читается: «оксид железа три».
Оксиды, которым соответствуют кислоты, также называют ангидридами: серный ангидрид SO3, азотный ангидрид N2O5 и др.
- формула оснований: Me+n(OH-)n, где нижний индекс n — количество гидроксид-анионов OH-.
K+1 и OH- → KOH, Mg+2 и OH- → Mg(OH)2.
Название: слово «гидроксид» в именительном падеже + название элемента в родительном падеже: гидроксид калия, гидроксид магния.
Если элемент образует несколько гидроксидов, то в конце добавляют степень окисления римскими цифрами, заключая их в скобки:
Fe(OH)2 — гидроксид железа (II), Cr(OH)3 — гидроксид хрома (III).
- формула кислот HnК, где K — кислотный остаток.
Названия бескислородных кислот: корень русского названия элемента, образующего кислоту + суффикс «о» + «-водородная кислота», например: HBr — бромоводородная кислота, HCl — хлороводородная кислота, H2S — сероводородная кислота.
Названия кислородсодержащих кислот: русское название образующего элемента + «кислота», с учетом правил:
- Если элемент находится в высшей степени окисления, то окончание будет «-ная» или «-овая»: H2SO4 — серная кислота, H3AsO4 — мышьяковая кислота. Окончание меняется с понижением степени окисления в последовательности: «-оватая» (HClO3— хлорноватая кислота), «-истая» (HClO2— хлористая кислота), «-оватистая» (HClO— хлорноватистая кислота).
- Если оксиду соответствует не одна кислота, то к названию кислоты с минимальным числом атомов кислорода, добавляется приставка «мета», а к названию кислоты с максимальным числом атомов кислорода — «орто», например, HPO3 — метафосфорная кислота, H3PO4 — ортофосфорная кислота.
Названия наиболее распространенных кислот и их остатков приведены в таблице 4:
Формула и название кислоты | Название кислотного остатка, образующего соль |
HAlO2 метаалюминиевая | метаалюминат |
H3AlO3 ортоалюминиевая | ортоалюминат |
HAsO3 метамышьяковая | метаарсенат |
H3AsO4 ортомышьяковая | ортоарсенат |
H3BO3 ортоборная | ортоборат |
HBr бромоводородная | бромид |
HBrO бромноватистая | гипобромит |
HBrO3 бромноватая | бромат |
HCN циановодородная | цианид |
H2CO3 угольная | карбонат |
HCl хлороводородная | хлорид |
HClO хлорноватистая | гипохлорит |
HClO2 хлористая | хлорит |
HClO3 хлорноватая | хлорат |
HClO4 хлорная | перхлорат |
HF фтороводородная | фторид |
HJ йодоводородная | йодид |
HMnO4 марганцовая | перманганат |
HNO2 азотистая | нитрит |
HNO3 азотная | нитрат |
HPO3 метафосфорная | метафосфат |
H3PO4 ортофосфорная | ортофосфат |
H2S сероводородная | сульфид |
H2SO3 сернистая | сульфит |
H2SO4 серная | сульфат |
H2SiO3 метакремниевая | метасиликат |
H3SiO4 ортокремниевая | ортосиликат |
- формула солей: MemKn
Название образуется в зависимости от типа соли.
- Средние соли — наименование кислотного остатка в именительном падеже + наименование катиона в родительном падеже, если необходимо, добавляется степень окисления: хлорид натрия NaCl, сульфат меди (II) CuSO4 и т.д.
- Кислые (только для многоосновных кислот) — приставка «гидро», при необходимости добавляется числовое значение (ди—, три—, тетра— и т.д.) + название кислотного остатка + название катиона: гидрокарбонат натрия NaHCO3, дигидроортофосфат бария Ba(H2PO4)2.
- Оснóвные — приставка «гидроксо» с числовым значением, если необходимо + название кислотного остатка + название катиона: гидроксохлорид магния MgOHCl, дигидроксохлорид железа (III) Fe(OH)2Cl.
- Двойные — анион в именительном падеже + катионы через дефис в родительном падеже: ортофосфат аммония—магния NH4MgPO4; метасиликат алюминия—лития LiAl(SiO3)2.
- Смешанные — название анионов через дефис в именительном падеже + название катиона в родительном падеже: хлорид-гипохлорит кальция Ca(ClO)Cl; нитрат-йодат натрия Na2IO3(NO3).
- Комплексные — название катиона в именительном падеже + название аниона в родительном падеже: хлорид диамминсеребра (I) [Ag(NH3)2]Cl; тетрагидроксоалюминат натрия Na[Al(OH)4].
- номенклатура бинарных соединений.
Бинарные соединения — сложные вещества, состоящие из двух элементов. В таких соединениях встречается два типа химической связи: ковалентная полярная (для неметаллов и некоторых амфотерных элементов) или ионная (для солей бескислородных кислот).
Названия строятся по схеме: к корню более электроотрицательного элемента добавляется окончание -ид (оксид, гидрид, карбид и т.д.) в именительном падеже + название второго элемента в родительном падеже, при необходимости добавляется числовое значение степени окисления: CS2 — дисульфид углерода или сульфид углерода (IV), MnF4 — тетрафторид марганца или фторид марганца (IV).
Для некоторых есть тривиальные названия: NH3 — аммиак, SiН4 — силан, PH3 — фосфин и др.
Строение и химические свойства
Простые вещества состоят из атомов одного химического элемента:
- одноатомные: благородные газы — гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радон Rn;
- двухатомные: водород H2, кислород O2, азот N2 и галогены: хлор Cl2, йод J2, бром Br2;
- трех и более атомные: озон O3, белый фосфор P4, кристаллическая (ромбическая и моноклинная) сера S8.
Порядок соединения атомов при образовании из них веществ обусловливает особенности строения веществ. Различают вещества молекулярного и немолекулярного строения. Немолекулярное строение имеют все металлы и большинство их соединений, графит, красный фосфор, алмаз, кремний Si и др. Большинство неметаллов и их соединений состоят из молекул, т. е. имеют молекулярное строение.
Химические свойства металлов и неметаллов
1. Химические свойства металлов определяются способностью отдавать свободные электроны с внешнего уровня. Они являются восстановителями. Взаимодействие идет с:
- неметаллами:
- +кислород O2 (кроме золота и металлов группы платины) → оксиды: 2Ca+ O2 → 2CaO;
- +галогены (F2, Cl2, Br2) → галогениды (фторид, хлорид, бромид и т.д.): Cu + Br2 → CuBr2;
- +азот, фосфор, сера, водород → нитриды, фосфиды, сульфиды, гидриды: 3Ca + N2 → Ca3N2.
- водой (только щелочные и щелочно-земельные металлы) → гидроксиды: 2Na + 2H2O → 2NaOH + H2↑;
- кислотами (металлы, стоящие в ряду активности до водорода) → соль: Mg + 2HCl → MgCl2 + H2↑;
- растворами солей менее активных металлов: Fe + CuSO4 → FeSO4 + Cu, при следующих условиях:
- соли, вступающие в реакцию и получающиеся в ходе нее, должны быть растворимы;
- металл вытесняет из соли другой металл, если находится левее в ряду активности;
- щелочные и щелочно-земельные металлы в данном случае будут вступать в реакцию с водой, а не с солью.
- оксидами (более активный металл вытесняет менее активный): Fe2O3 + 2Al → Al2O3 + 2Fe.
2. Химические свойства неметаллов обусловлены свободными электронами (от 3 до 7) на внешнем электронном уровне.
- окислительные свойства наиболее характерны (стремятся присоединять электроны) в реакциях с:
- металлами: O2+2Mg → 2MgO; S + 2Na → Na2S;
- неметаллами:
- кислород O2 (из галогенов реагирует только фтор): S + O2 → SO2;
- водород H2 (кроме кремния, фосфора и бора) : С + 2H2 → CH4;
- неметалл c меньшей электроотрицательностью: 3S + 2P → P2S3 (нагревание без доступа воздуха, сера — окислитель);
- солями (вытесняют менее активные неметаллы): Cl2 + 2NaBr → 2NaCl + Br2.
- восстановительные свойства (исключение: фтор F — всегда окислитель) в некоторых реакциях с:
- неметаллами, электроотрицательность которых ниже: C + O2→ CO2 (углерод — восстановитель);
- сложными веществами — окислителями (CuO, HNO3): S + 6HNO3 → H2SO4 + 6NO2↑ + 2H2O.
- и окислительные, и восстановительные свойства проявляют хлор, сера, фосфор, йод и бром в реакциях диспропорционирования:
- Cl20 + H2O → HCl-1 + HCl+1O;
- 3S0 + 6NaOH → 2Na2S-2 + Na2S+6O3 + 3H2O.
Химические свойства благородных газов
- плохо растворяются в воде и вступают в реакции с другими веществами только в специально созданных условиях;
- не горят; вытесняют кислород из воздуха, снижая его содержание до критически низких показателей, приводящих к смерти.
Строение и основные химические свойства сложных веществ
Сложные соединения имеют ионную или ковалентную связь между атомами.
- оснóвные + кислоты → соли: CaO + 2HCl → CaCl2 + H2O;
- кислотные + основания → соли: SO3 + 2NaOH → Na2SO4 + H2O;
- амфотерные реагируют и с кислотами, и с основаниями → соли:
ZnO + H2SO4 → ZnSO4 + H2О,
ZnO+ 2NaOH + H2O → Na2[Zn(OH)4].
Все основания реагируют с кислотами (реакция нейтрализации):
- KOH + 2HCl → KCl + H2O;
- 2Fe(OH)3 + 3H2SO4 → Fe2(SO4)3 + 6H2O.
1. Щелочи взаимодействуют с:
- неметаллами: 6KOH + 3S → K2SO3 + 2K2S + 3H2O;
- кислотными оксидами: 2NaOH + NO2 → NaNO2 + NaNO3 + H2O.
2. Нерастворимые основания разлагаются при нагревании: Cu(OH)2 → CuO + H2O.
- + основания (реакция нейтрализации): 2Fe(OH)3 + 3H2SO4 → Fe2(SO4)3 + 6H2O;
- + металлы, стоящие левее водорода в ряду активности: Mg + 2HCl → MgCl2 + H2↑;
- + основные и амфотерные оксиды: CaO + H2SO4 → CaSO4 + H2O; ZnO + H2SO4 → ZnSO4 + H2O;
- + соли: BaCl2 + H2SO4 → BaSO4 + 2HCl.
- + кислоты (сильные): Na2SiO3 + 2HCl → H2SiO3↓ + 2NaCl;
- + щёлочи, если образуется нерастворимое основание: FeCl3 + 3NaOH → Fe(OH)3↓ + 3NaCl;
- + металлы: Zn + Pb(NO3)2 → Pb↓ + Zn(NO3)2;
- + соли при условии необратимости реакции: Na2CO3 + Ca(NO3)2 → CaCO3↓ + 2NaNO3.
Также о химических свойствах неорганических соединений можно почитать в статье «Классы неорганических соединений».
Источник