Вода по катионному составу

Минеральные питьевые воды

К минеральным питьевым водам относят воды с минерализацией не менее 1 г/дм 3 минеральных солей или при меньшей минерализации, содержащие биологически активные микрокомпоненты в количестве не низке бальнеологических норм (см. табл. 14).

Минеральные питьевые воды могут быть естественными (природными) или искусственными, негазированными и газированными (естественно или искусственно).

Природные минеральные воды. Они представляют собой подземные воды с повышенным содержанием физиологически активных химических компонентов и газов (углекислоты, сероводорода и др.).

Природные минеральные воды делят на питьевые лечебные с общей минерализацией 10—15 г/дм 3 и более (до 21 г/дм 3 в воде Лысогорской, Синегорской и 55 г/дм 3 в воде Лугела) и питьевые лечебно-столовые с общей минерализацией 1—10 г/дм 3 (в минеральной воде Ессентуки № 4 — до 10 г/дм 3 ). Принятое деление весьма условно, так как лечебно-столовые воды могут применяться в качестве жаждоутоляющего напитка (но не систематически), а по назначению врача — для лечебных целей. Лечебные минеральные воды оказывают наиболее выраженное действие при заболеваниях органов пищеварения и нарушении обмена веществ.

Россия богата минеральными источниками, имеющими мировую известность. Это минеральные воды Северного Кавказа (Нарзан, Ессентуки, Смирновская, Славяновская, Баталинская). Поступают минеральные питьевые воды и из Закавказья (Боржоми, Дилижан, Саирме, Лугела, Арзни, Джермук, Бадамлинская, Исти-Су), Украины (Березовская, Миргородская, Поляна Квасова, Свалява, Нафтуся). Из источников других районов страны наиболее известны такие минеральные воды, как Ижевская (Татарстан), Дарасун, Ласточка (Забайкалье), Анивская, Нижне-Сергиевская и многие другие.

Природные минеральные воды по анионному и катионному составу делят на 31 группу, относящихся к одному из следующих пяти типов: гидрокарбонатные; хлоридные; сульфатные; воды сложного состава (хлоридно-гидрокарбонат-ные, сульфатно-гидрокарбонатные и хлоридно-сульфатные); воды, содержащие биологически активные элементы. В большинстве минеральных вод наряду с высоким содержанием тех или иных анионов (НСОз

Читайте также:  Берег с водой как называется

) растворено значительное количество катионов (Са ++ , Mg ++ , Na + , K + ). Это отражено в названии группы минеральной воды. Например, существуют группы вод с такими названиями:

♦ гидрокарбонатная магниево-натриево-кальциевая и магниево-кальциево-натриевая (Амурская);

♦ сульфатно-гидрокарбонатная, магниево-натриевая, магниево-кальциевая и натриево-магниево-кальциевая (Нарзан);

♦ хлоридно-сульфатная натриевая (Нижне-Ивкинская № 1) и т. д.

Преобладание тех или иных солей или газов в минеральных водах сказывается на их вкусовых особенностях. Так, наличие углекислого газа придает воде кислый вкус, присутствие поваренной и хлористо-водородной солей — соленый. Щелочные соли придают воде солено-горький привкус, сернокислые — горький, железистые — слегка вяжущий, серные — неприятный запах и вкус тухлых яиц.

К типу гидрокарбонатных (углекислых) минеральных вод относятся Майкопская, Горячий ключ № 1, Боржоми, Терсинка, Сахалинская, Лужанская, Поляна Квасова, Амурская и др. Содержание в них гидрокарбонатных и карбонатных ионов колеблется в зависимости от вида воды от 1,0 до 8 г/дм 3 .

Хлоридные минеральные воды — Ангарская, Нальчик, Ростовская, Калининградская, Минская № 3, Омская № 1, Тюменская и др.— содержат хлоридные ионы в количестве 2,0—6,5 г/дм 3 .

Сульфатные минеральные воды содержат от 2,0 до 5,5 г/дм 3 сульфатных ионов. Представителями вод этого типа являются Краинская, Казанская, Кашинская, Смоленская, Московская, Уфимская и др.

Примером минеральных питьевых вод сложного состава являются Новоижевская (сульфатно-хлоридная), Ессентуки № 4 и 17 (хлоридно-гидрокарбонатные), Ачалуки (гидрокарбонатно-сульфатная), Серноводская (гидрокарбо-натно-хлоридно-сульфатная), Смирновская и Нарзан (сульфатно-гидрокарбонатные) и др.

К биологически активным относятся воды различной степени минерализации, если в них наряду с широко распространенными анионами и катионами растворен хотя бы один из следующих элементов: железо — в количестве свыше 10 мг/ дм 3 , мышьяк — свыше 7, бром — более 25, йод — свыше 10, литий — более 5 мг/ дм 3 или присутствуют радиоактивные элементы радий и радон. К этим водам относятся Полюстрово и Марциальная, содержащие соответственно 40—60 и 10—100 мг/дм 3 железа, Ходыженская и Синегорская — 10—15 мг/дм 3 йода, Талицкая — 22—30 мг/дм 3 брома, Синегорская — 20—25 мг/дм 3 мышьяка.

По радиоактивности различают воды слабые (10— 100-Ю» 10 Кюри/дм 3 ), средние (100—400 • 10 10 Кюри/дм 3 ) и сильные (свыше 400 • 10″ 10 Кюри/дм 3 ). Радиоактивность сохраняется в воде 3—4 суток, что необходимо учитывать при организации ее продажи населению.

Природные минеральные воды при выходе из недр могут иметь различную температуру, в зависимости от которой их делят на холодные (до 2043), гипотермальные (20— 37°С) и гипертермальные (37—100°С).

Технологическая схема обработки и розлива минеральной воды включает следующие производственные операции: сбор воды в специальном заводском резервуаре, фильтрацию, охлаждение, облучение ультрафиолетовыми лучами, насыщение углекислотой, розлив в бутылки, укупорку и бракераж бутылок, наклейку этикеток, укладку в ящики и транспортировку на базисные склады, выдержку на карантине, повторный бракераж и отгрузку торгующим организациям.

При этом массовая доля углекислого газа в питьевых минеральных водах, разлитых в бутылках, должна быть не менее 0,30%, в железистых водах — 0,40%, а в водах «Нижне-Ивкинская № 1», «Ново-Ижевская», «Талицкая» — не более 0,20%. Минеральная вода «Лугела» углекислым газом не насыщается.

Искусственные минеральные воды. Их готовят путем добавления некоторых солей в питьевую воду. К ним относят содовую и сельтерскую воды, представляющие собой насыщенные углекислотой слабые водные растворы смесей химически чистых нейтральных и щелочных солей натрия, кальция, магния.

Благодаря солоноватому привкусу эти воды оказывают жаждоутоляющее действие, особенно в жаркое время года или в горячих цехах.

Искусственные минеральные воды получают на непрерывно действующих сатураторах, куда направляют водный раствор солей, предварительно подготовленных в отдельном сборнике из рабочих растворов определенной плотности: хлористого натрия— 1,116, углекислого натрия безводного — 1,082, углекислого натрия кристаллического— 1,082, двууглекислого натрия — 1,0581, смеси одной части хлористого кальция и 1/10 части хлористого магния — 1,0599.

В содовой воде должно содержаться 0,2—0,25% соды, 0,10—0,15% хлористого натрия. В сельтерской, помимо соды и хлористого натрия, растворено 0,10—0,15% хлористого кальция и 0,0010—0,0015% хлористого магния. В сельтерской воде солоноватый вкус менее выражен, чем в содовой. Содержание углекислоты в той и другой воде — 0,4%.

По органолептическим показателям качества естественные и искусственные минеральные воды должны быть бесцветными жидкостями, прозрачными, иметь характерные для комплекса растворенных веществ специфические вкус и запах, соответствовать санитарно-бактериологическим требованиям. Допускается незначительное выпадение естественного осадка минеральных солей при хранении.

В минеральных водах регламентируется содержание следующих компонентов, мг/дм 3 , не более: нитратов — 50,0; нитритов — 2,0; свинца — 0,1; селена 0,05; стронция — 25,0; мышьяка в лечебных водах — 2,0, а в лечебно-столовых — 1,5; фтора соответственно — 15,0 и 10,0; фенолов — 0,001, других органических веществ в лечебных водах — 15,0 и в лечебно-столовых — 10,0, радия — 5,0 • Ю- 10 Ки/дм 3 .

Природные и искусственные минеральные воды поступают в торговую сеть в стеклянных бутылках по 0,33, 0,5 л, а также в полиэтиленовых и полиэтилентерефталат-ных бутылках емкостью 1,0, 1,5, 2,0 л, герметично укупоренных кронен-пробками с наклеенной этикеткой утвержденного образца.

На каждую бутылку с минеральной водой наклеивают этикетку с указанием: наименования предприятия-изготовителя или его товарного знака, названия воды и ее группы, номера скважины или названия источника, минерализации, назначения воды, показаний по лечебному применению, рекомендаций по хранению, даты розлива, срока хранения, номера бригады или браковщика, номера стандарта.

Минеральные воды, разлитые в бутылках, хранят в специальных проветриваемых темных складских помещениях, предохраняемых от попадания влаги, при температуре от 5 до 20°С. Во избежание утечки газа бутылки, укупоренные кронен-пробками с прокладкой из пробки или полимерных материалов, хранят в горизонтальном положении в штабелях или ящиках. При укупорке кронен-пробками с прокладкой из полимерных паст бутылки можно хранить в вертикальном положении. Гарантийный срок хранения минеральных вод в этих условиях — до 12 мес. со дня их розлива, для железистых вод срок хранения составляет 4 мес.

Источник

Химический состав и классификация минеральных вод

§1. Химический состав и классификация минеральных вод

1.1. Химический состав минеральных вод

Минеральные воды – это такие подземные, реже поверхностные воды, которые насыщены различными минеральными компонентами, благодаря которым вода приобретает определённые свойства. Одни вещества в них содержатся в виде ионов, другие в виде недиссоциированных молекул, а третьи представляют собой коллоидные частицы. Разные минеральные воды отличаются друг от друга и набором компонентов, и их количеством. Поэтому одни воды пригодны для питья, а другие — для лечебных ванн.[1]

Главными компонентами минеральной воды являются семь главных ионов: катионы натрия (Na+ ), кальция (Са2+), магния (Mg2+) и калия (К+) и анионы хлора (Сl-), сульфат анионы (SO42-) и гидрокарбонат анионы (НСО3-). Ионы хлора придают воде солёный вкус, сульфат-анионы, ионы кальция и магния – горький.[2] Но кроме этих ионов в воде есть практически все элементы таблицы Менделеева, только в разных количествах. Наиболее часто в минеральных водах встречаются такие компоненты, как железо, йод, фтор, кобальт, медь, молибден, бром, марганец, литий, мышьяк, стронций. Также помимо минеральных веществ в воде содержатся газы и органические вещества (остатки). Состав и концентрация веществ в воде зависит от факторов происхождения и места происхождения воды.

1.2. Классификация минеральных вод

В связи с составом минеральных вод их можно классифицировать по анионному составу, а также по катионному составу. Выделяется всего три вида минеральных вод по этой классификации, несмотря на то, что главных катионов в воде содержится четыре

Источник

Вода по катионному составу

Библиографическая ссылка на статью:
Сагдеев М.А., Чигринева Н.А., Сальникова В.И. Определение содержания катионов и анионов в питьевой воде методом капиллярного электрофореза // Современные научные исследования и инновации. 2017. № 3 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2017/03/79588 (дата обращения: 20.10.2021).

Питьевая вода – это вода, предназначенная для ежедневного и безопасного пользования человеком и другими живыми организмами. Она должна иметь строго регламентированный стандарт по составу и свойствам, а также характеризоваться пониженным содержанием солей и сухого остатка. Вода из пресных источников чаще всего непригодна для питья, и для того чтобы она соответствовала санитарным нормам и правилам, её очищают и подготавливают.

Цель данной работы – оценка содержания различных ионов в питьевой воде различных районов Оренбургской области.

Для достижения поставленной цели необходимо решить следующие задачи:

– провести анализ литературы, научных и технических достижений в мировой практике по исследованию содержания катионного и анионного состава воды;

– определить содержание катионов и анионов в питьевой воде Оренбургской области методом капиллярного электрофореза;

– сравнить полученные результаты по содержанию катионов и анионов в воде с предельно–допустимыми концентрациями.

В качестве пунктов пробоотбора были выбраны следующие: г. Новотроицк, г. Орск, Илекский и Новосергиевский районы. Пробы воды отбирались согласно ГОСТу31862-2012 «Вода питьевая. Отбор проб» [1]. В каждом населенном пункте отбирали по 5 проб. В исследуемых образцах определяли содержание анионов (Cl — , NO2 — , SO4 2- , NO3 — , F — , PO4 3- ) и катионов (NH3 + , K + , Na + , Mg 2+ , Ba 2+ , Ca 2+ ) методом капиллярного электрофореза [2, 3].

Метод капиллярного электрофореза реализуется за счёт разделения заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля [4].

Небольшое количество анализируемого раствора вводят в капилляр, предварительно заполненный нужным буферным раствором-электролитом.

Далее к концам капилляра подают высокое напряжение (до 30кВ) и компоненты смеси с разной скоростью в зависимости от заряда и массы начинают двигаться к зоне детектирования. Информация о прохождении зоны детектирования оцифровывалась и передавалась на компьютер, в виде пиков на электрофореграмме.

Полученная последовательность пиков называется электрофореграммой; качественной характеристикой вещества является время миграции, а количественной – высота или площадь пика, пропорциональная концентрации вещества. Обработка полученных электрофореграмм была проведена в программе “Мультихром”.

Первым этапом в работе была подготовка буферных растворов. Рабочий буферный раствор для определения неорганических анионов состоит из смеси 2,2-дигидроксиэтиламин (основание) и хромовой кислоты с добавкой катионного ПАВ бромида (или гидроксида) цетилтриметиламмония ЦТАБ или ЦТАОН. Анионы мигрируют в зону детектирования в следующем порядке: хлорид, нитрит, сульфат, нитрат, фторид, фосфат.

В результате проведенных исследований было установлено, что содержание ионов хлора наименьшее в воде г. Орска и составляет 69,66 мг/мл, а наибольшее в воде г. Новотроицка – 157,72 мг/мл (таблица 1). Полученные значения не превышают ПДК (350 мг/мл).

Таблица 1 – Содержание анионов в питьевой воде

Содержание нитритов минимально в г. Новотроицке (0,00071 мг/мл). Содержание сульфитов, нитратов, фторидов и фосфатов также не превышает ПДК.

Известно [4], что для регистрации пиков катионов, применяют косвенное детектирование, т.е. в состав ведущего электролита вводят поглощающий катион бензимидазола (БИА) в концентрации 0,01 М, которая обеспечивает необходимую оптическую плотность исходного раствора. При разделении катионы пробы эквивалентно замещают в растворе катион бензимидазолия, что в итоге приводит к снижению оптической плотности в зоне каждого катионного компонента.

При электрофорезе в зону детектирования первыми мигрируют катионы калия и аммония. Их электрофоретическая подвижность одинакова, и на электрофореграмме без специальных мер, они выходят одним пиком. Для того чтобы идентификация катионов калия и аммония была возможна, в состав буферного раствора вводят добавку вещества под названием 18-краун-6.18-краун-6 – это макроцикл с гидрофильной внутренней полостью, размер которой практически идентичен размеру ионного радиуса иона калия. В результате взаимодействия краун эфира с катионом калия образуется комплекс, система “гость» – «хозяин”, где “гостем” является катион калия, а “хозяином” – молекула краун-эфира. В результате образования комплекса, подвижность ионов калия снижается, а подвижность других катионов остается без изменений. После миграции катионов калия и аммония с хорошим разрешением мигрируют пики натрия, магния, бария и кальция.

В таблице 2 представлены результаты исследований катионного состава воды. Видно, что содержание катиона аммония наибольшее в питьевой воде г. Орска, а наименьшее в Новосергиевском районе. Все исследуемые образцы характеризуются низкими значениями концентраций катионов калия и натрия. Минимальное значение содержания катиона бария обнаружено в воде Новосергиевского района 0,033 мг/л, при ПДК = 0,7 мг/л.

Таблица 2 – Содержание катионов в питьевой воде

Общая жесткость (ммоль/л)

Общая жесткость воды отражает суммарное содержание ионов кальция и магния. Жесткая вода мало пригодна для хозяйственно-бытовых нужд. Все исследуемые образцы характеризуются мягкой водой со средним значением показателя жесткости 2,3 ммоль/л, что соответствует установленным гигиеническим нормам (СанПиН 2.1.4.1074–01) [5]. Использование слишком мягкой воды может приводить к коррозии труб, так как, в этом случае отсутствует кислотно–щелочная буферность, которую обеспечивает гидрокарбонатная жёсткость. Потребление жёсткой или мягкой воды обычно не является опасным для здоровья, хотя есть данные о том, что высокая жёсткость способствует образованию мочевых камней, а низкая – незначительно увеличивает риск сердечно–сосудистых заболеваний [6, 7].

Заключение

Результаты исследований свидетельствуют, что показатели качества питьевых вод в целом находятся в пределах нормы. Обнаружены низкие значения концентраций катионов калия и натрия во всех отобранных пробах. Мягкой водой со средним значением показателя жесткости 2,3 ммоль/л характеризуются питьевые воды изученных населенных пунктов.

Библиографический список

  1. ГОСТ 31862-2012. Вода питьевая. Отбор проб.- Введ. 2014-01-01.-Москва: Стандаринформ, 2013. -7с.
  2. ГОСТ 31867-2012. Вода питьевая. Определение содержания анионов методом хроматографии и капиллярного электрофореза. – Введ.2005-01-01. –Москва: ИПК Издательство стандартов, 2004.-10с.
  3. ГОСТ 31869-2012.Вода. Методы определения содержания катионов (аммония, бария, калия, кальция, лития, магния, натрия, стронция) с использованием капиллярного электрофореза. – Введ. 2014-01-01. – Москва: Стандаринформ, 2013. -17с.
  4. Комарова Н. В. Практическое руководство по использованию систем капиллярного электрофореза «КАПЕЛЬ»/ Н.В.Комарова, Я.С.Каменцев, — СПб.: ООО «Веда», 2006. — 212 с.
  5. Санитарные нормы и правила СанПиН 2.1.4.1074 – 01. Питьевая вода. Гигиенические требования к качеству воды централизованных систем водоснабжения. – М: Минздрав РФ, 2001. – 89 с.
  6. Голдовская-Перистая Л. Ф. Гигиеническая оценка качества питьевой воды централизованной системы водоснабжения Белгородской области по некоторым химическим показателям /Л.Ф. Голдовская-Перистая., В.А. Перистый, А.А. Шапошников // Научные ведомости БелГУ. Серия: Естественные науки. 2008. №3 (43)
  7. Косинцев В. И. Применение щелочных растворов и волокнистых фильтров для умягчения воды/В.И.Косинцев, В.М. Беляев, М.В.Куликова М, Н.В. Прокудин, Н.В. Маланова, Н.А. Шадская// Современные наукоемкие технологии. 2010. №7 С.79-80.

Количество просмотров публикации: Please wait

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

Если Вы еще не зарегистрированы на сайте, то Вам необходимо зарегистрироваться:
Регистрация

&copy 2021. Электронный научно-практический журнал «Современные научные исследования и инновации».

Источник

Оцените статью