Вода при площади нагрева

Вода в системах водяного отопления

В системах водяного отопления вода используется для передачи тепла от его генератора к потребителю.
Наиболее важными свойствами воды являются:
• теплоемкость;
• изменение объема при нагреве и при охлаждении;
• характеристики кипения при изменении внешнего давления;
• кавитация.
Рассмотрим данные физические свойства воды.

Удельная теплоемкость

Важным свойством любого теплоносителя является его теплоемкость. Если выразить ее через массу и разность температур теплоносителя, то получится удельная теплоемкость. Она обозначается буквой c и имеет размерность кДж/(кг • K) Удельная теплоемкость — это количество тепла, которое необходимо передать 1 кг вещества (например, воды), чтобы нагреть его на 1 °C. И наоборот, вещество отдает такое же количество энергии при охлаждении. Среднее значение удельной теплоемкости воды в диапазоне между 0 °C и 100 °C составляет:
c = 4,19 кДж/(кг • K) или c = 1,16 Втч/(кг • K)
Количество поглощаемого или выделяемого тепла Q, выраженное в Дж или кДж, зависит от массы m, выраженной в кг, удельной теплоемкости c и разности температур, выраженной в K.

Увеличение и уменьшение объема

Изменение объема воды

Все природные материалы расширяются при нагревании и сжимаются при охлаждении. Единственным исключением из этого правила является вода. Это уникальное ее свойство называется аномалией воды. Вода имеет наибольшую плотность при +4 °C, при которой 1 дм3 = 1 л имеет массу 1 кг.

Если вода нагревается или охлаждается относительно этой точки, ее объем увеличивается, что означает уменьшение плотности, т. е. вода становится легче. Это можно отчетливо наблюдать на примере резервуара с точкой перелива. В резервуаре находится ровно 1000 см3 воды с температурой +4 °C. При нагревании воды некоторое количество выльется из резервуара в мерную емкость. Если нагреть воду до 90 °C, в мерную емкость выльется ровно 35,95 см3, что соответствует 34,7 г. Вода также расширяется при ее охлаждении ниже +4 °C.

Читайте также:  Тот кто воду не замутил

Благодаря этой аномалии воды у рек и озер зимой замерзает именно верхний слой. По той же причине лед плавает на поверхности и весеннее солнце может его растопить. Этого бы не происходило, если бы лед был тяжелее воды и опускался на дно.

Резервуар с точкой перелива

Однако, такое свойство расширяться может быть опасным. Например, автомобильные двигатели и водяные насосы могут лопнуть, если вода в них замерзнет. Во избежание этого в воду добавляются присадки, препятствующие ее замерзанию. В системах отопления часто используются гликоли; соотношение воды и гликоля см. в спецификации производителя.

Характеристики кипения воды

Если воду нагревать в открытой емкости, она закипит при температуре 100 °C. Если измерять температуру кипящей воды, окажется, что она остается равной 100 °C пока не испарится последняя капля. Таким образом, постоянное потребление тепла используется для полного испарения воды, т. е. изменения ее агрегатного состояния.

Эта энергия также называется латентной (скрытой) теплотой. Если подача тепла продолжается, температура образовавшегося пара снова начнет подниматься.

Изменение агрегатного состояния при повышении температуры

Описанный процесс приведен при давлении воздуха 101,3 кПа у поверхности воды. При любом другом давлении воздуха точка кипения воды сдвигается от 100 °C.

Если бы мы повторили описанный эксперимент на высоте 3000 м — например, на Цугшпитце, самой высокой вершине Германии — мы бы обнаружили, что вода там закипает уже при 90 °C. Причиной такого поведения является понижение атмосферного давления с высотой.

Температура кипения воды как функция давления

Чем ниже давление на поверхности воды, тем ниже будет температура кипения. И наоборот, температура кипения будет выше при повышении давления на поверхности воды. Это свойство используется, например, в скороварках.

График показывает зависимость температуры кипения воды от давления. Давление в системах отопления намеренно повышается. Это помогает предотвратить образование пузырьков газа в критических рабочих режимах, а также предотвращает попадание наружного воздуха в систему.

Расширение воды при нагревании и защита от избыточного давления

Системы водяного отопления работают при температурах воды до 90 °C. Обычно система заполняется водой при температуре 15 °C, которая затем расширяется при нагревании. Нельзя допустить, чтобы это увеличение объема привело к возникновению избыточного давления и переливу жидкости.

Система отопления со встроенным предохранительным клапаном

Когда отопление отключается в летний период, объем воды возвращается к первоначальному значению. Таким образом, для обеспечения беспрепятственного расширения воды необходимо установить достаточно большой бак.

Старые системы отопления имели открытые расширительные баки. Они всегда располагались выше самого высокого участка трубопровода. При повышении температуры в системе, что приводило к расширению воды, уровень в баке также повышался. При снижении температуры он, соответственно, понижался.

Современные системы отопления используют мембранные расширительные баки (МРБ). При повышении давления в системе нельзя допускать увеличения давления в трубопроводах и других элементах системы выше предельного значения.

Поэтому обязательным условием для каждой системы отопления является наличие предохранительного клапана.

При повышении давления сверх нормы предохранительный клапан должен открываться и стравливать лишний объем воды, который не может вместить расширительный бак. Тем не менее, в тщательно спроектированной и обслуживаемой системе такое критическое состояние никогда не должно возникать.

Компенсация изменения объема воды в системе отопления:

Все эти рассуждения не учитывают тот факт, что циркуляционный насос еще больше увеличивает давление в системе. Взаимосвязь между максимальной температурой воды, выбранным насосом, размером расширительного бака и давлением срабатывания предохранительного клапана должна быть установлена самым тщательным образом. Случайный выбор элементов системы — даже на основании их стоимости — в данном случае неприемлем.

Мембранный расширительный бак поставляется заполненным азотом. Начальное давление в расширительном мембранном баке должно быть отрегулировано в зависимости от системы отопления. Расширяющаяся вода из системы отопления поступает в бак и сжимает газовую камеру через диафрагму. Газы могут сжиматься, а жидкости — нет.

Давление

Определение давления
Давление — это статическое давление жидкостей и газов, измеренное в сосудах, трубопроводах относительно атмосферного давления (Па, мбар, бар).

Статическое давление
Статическое давление — это давление неподвижной жидкости.
Статическое давление = уровень выше соответствующей точки измерения + начальное давление в расширительном баке.

Динамическое давление
Динамическое давление — это давление движущегося потока жидкости. Давление нагнетания насоса Это давление на выходе центробежного насоса во время его работы.

Перепад давления
Давление, развиваемое центробежным насосом для преодоления общего сопротивления системы. Оно измеряется между входом и выходом центробежного насоса.

Рабочее давление
Давление, имеющееся в системе при работе насоса. Допустимое рабочее давление Максимальное значение рабочего давления, допускаемого из условий безопасности работы насоса и системы.

Кавитация

Кавитация — это образование пузырьков газа в результате появления локального давления ниже давления парообразования перекачиваемой жидкости на входе рабочего колеса. Это приводит к снижению производительности (напора) и КПД и вызывает шумы и разрушение материала внутренних деталей насоса. Из-за схлопывания пузырьков воздуха в областях с более высоким давлением (например, на выходе рабочего колеса) микроскопические взрывы вызывают скачки давления, которые могут повредить или разрушить гидравлическую систему. Первым признаком этого служит шум в рабочем колесе и его эрозия.

Важным параметром центробежного насоса является NPSH (высота столба жидкости над всасывающим патрубком насоса). Он определяет минимальное давление на входе насоса, требуемое данным типом насоса для работы без кавитации, т. е. дополнительное давление, необходимое для предотвращения появления пузырьков. На значение NPSH влияют тип рабочего колеса и частота вращения насоса. Внешними факторами, влияющими на данный параметр, являются температура жидкости, атмосферное давление.

Предотвращение кавитации
Чтобы избежать кавитации, жидкость должна поступать на вход центробежного насоса при определенной минимальной высоте всасывания, которая зависит от температуры и атмосферного давления.
Другими способами предотвращения кавитации являются:
• Повышение статического давления
• Понижение температуры жидкости (снижение давления парообразования PD)
• Выбор насоса с меньшим значением постоянного гидростатического напора (минимальная высота всасывания, NPSH)
Специалисты фирмы «Агроводком» с удовольствием помогут вам определиться с оптимальным выбором насоса. Обращайтесь!

Источник

Вода при площади нагрева

Расчеты ГВС, БКН. Находим объем, мощность ГВС, мощность БКН(змейки), время прогрева и т.п.

В этой статье рассмотрим практические задачи для нахождения объемов накопления горячей воды, мощности нагрева ГВС. Мощности нагревательного оборудования. Время готовности горячей воды для различного оборудования и тому подобное.

Какие схемы использовать для получения ГВС? Ответ тут: Схемы получения ГВС у котла.

Рассмотрим примеры задач:

1. Расчет мощности проточного водонагревателя
2. Расчет выходной температуры у проточного водонагревателя
3. Расчет время нагрева электрического водонагревателя (бойлера)
4. Расчет времени нагрева бойлера косвенного нагрева
5. Сколько необходимо накопить горячей воды для того, чтобы помыться 30 минут в душе?
6. Расчет объема бака на ГВС
7. Расчет дополнительной мощности на ГВС. Мощность котла = Отопление + ГВС

Задача 1. Найти мощность проточного водонагревателя

Проточный водонагреватель — это водонагреватель объем воды, в котором может быть настолько мал, что его существование бесполезно для накопления воды. Поэтому считается, что проточный водонагреватель не предназначен аккумулировать горячую воду. И мы это не учитываем в расчетах.

Дано: Расход воды равен 0,2 л/сек. Температура холодной воды 15 градусов Цельсия.

Найти: Мощность проточного водонагревателя, при условии, что он нагреет воду до 45 градусов.

Как найти теплоемкость при различных температурах воды описано тут: http://infobos.ru/str/576.html

Ответ: Мощность проточного водонагревателя составит 25120 Вт = 25 кВт.

Практически не целесообразно потреблять большое количество электроэнергии. Поэтому необходимо аккумулировать(накапливать горячую воду) и уменьшать нагрузку на электропровода.

Проточные водонагреватели имеют не стабильный прогрев горячей воды. Температура горячей воды будет зависеть от расхода воды через проточный водонагреватель. Датчики переключения мощности или температуры не позволяют хорошо стабилизировать температуру.

Если хотите найти выходную температуру существующего проточного водонагревателя при определенном расходе.

Задача 2. Время нагрева электрического водонагревателя (бойлера)

Имеем электрический водонагреватель объемом 200 литров. Мощность электрических тэнов 3 кВт. Необходимо найти время нагрева воды с 10 градусов до 90 градусов Цельсия.

Wт = 3кВт = 3000 Вт.

Найти: Время, за которое объем воды в баке водонагревателя нагреется с 10 до 90 градусов.

Потребляемая мощность тэнов не меняется от температуры воды в баке. (Как меняется мощность в теплообменниках, рассмотрим в другой задаче.)

Необходимо найти мощность тэнов, как для проточного водонагревателя. И этой мощности будет достаточно нагреть воду за 1 час времени.

Если известно, что с мощностью тэнов в 18,6 кВт бак нагреет воду за 1 час времени, тогда не сложно посчитать время с мощностью тэнов на 3 кВт.

Ответ: Время нагрева воды с 10 до 90 градусов с емкостью 200 литров составит 6 часов 12 минут.

Далее рассчитаем время нагрева бойлера косвенного нагрева.

Задача 3. Время нагрева бойлера косвенного нагрева

Рассмотрим для примера бойлер косвенного нагрева: Buderus Logalux SU200

Номинальная мощность: 31.5 кВт. Тут не понятно, из каких соображений это найдено. Но посмотрите таблицу ниже.

Объем 200 литров

Змейка сделана из стальной трубы DN25. Внутренний диаметр 25 мм. Наружный 32 мм.

Гидравлические потери в трубе-змейке указывают 190 мБар при расходе 2 м3/час. Что соответствует 4.6 Kvs.

Конечно, это сопротивление велико для воды и новой трубы. Скорее всего были заложены риски на зарастание трубопровода, на теплоноситель с большой вязкостью и сопротивление на соединениях. Лучше указать заведомо большие потери, чтобы кто-либо не просчитался в расчетах.

Площадь теплообмена 0,9 м2.

Помещается в трубу-змейку 6 литров воды.

Длина этой трубы-змейки примерно 12 метров.

Время прогрева пишут 25 минут. Тут не понятно, как это посчитали. Смотрим таблицу.

Таблица мощности змейки БКН

Рассмотрим таблицу определения мощности змейки

Рассмотрим SU200 мощность теплоотдачи змейки 32,8 кВт

Затекает в змейку теплоноситель с температурой 80 градусов с расходом 2 м3/час.

При этом в контуре ГВС расход 805 л/час. Затекает 10 градусов выходит 45 градусов

Рассмотрим SU200 мощность теплоотдачи змейки 27,5 кВт

Затекает в змейку теплоноситель с температурой 80 градусов с расходом 2 м3/час.

При этом в контуре ГВС расход 475 л/час. Затекает 10 градусов выходит 60 градусов

К сожалению, я Вам не предоставлю расчет времени нагрева бойлера косвенного нагрева. Потому что это не одна формула. Тут переплетения множество значений: Начиная от формул коэффициента теплопередачи, поправочные коэффициенты для разных теплообменников (так как конвекция воды тоже вносит свои отклонения), и заканчивается это итерацией расчетов по измененным температурам с течением времени. Тут, скорее всего в будущем я сделаю калькулятор расчета.

Вам придется довольствоваться тем, что нам говорит производитель БКН(Бойлера косвенного нагрева.)

А говорит нам производитель следующее:

Что вода будет готова через 25 минут. При условии, что затекать в змейку будет 80 градусов с расходом 2 м3/час. Мощность котла, дающий нагретый теплоноситель не должна быть ниже 31,5 кВт. Готовая к приему вода считается 45-60 градусов. 45 градусов помыться в душе. 60 это очень горячая вода, например для мыться посуды.

Задача 4. Сколько необходимо накопить горячей воды для того, чтобы помыться 30 минут в душе?

Рассчитаем для примера с электрическим водонагревателем. Так как электрический тэн имеет постоянную отдачу тепловой энергии. Мощность тэнов 3 кВт.

Холодная вода 10 градусов

Минимальная температура из крана 45 градусов

Максимальная температура нагрева воды в баке 80 градусов

Комфортный расход вытекающей воды из крана 0,25 л/сек.

Сначала найдем мощность, которая обеспечит данный расход воды

Ответ: 0,45 м3 = 450 литров воды понадобится для того, чтобы помыться накопленной горячей водой. При условии, что тэны не нагревают воду в момент потребления горячей воды.

Это доказывается следующим образом:

Энергия, затраченная на нагрев бака с 10 до 80:

То есть в баке объемом 450 литров с температурой 80 градусов уже содержится 36 кВт тепловой энергии.

Из этого бака мы забираем энергию: 450 литров воды с температурой 45 градусов (через кран). Тепловая энергия воды объемом 450 литров с температурой 45 градусов = 18 кВт.

Эта доказывается законом сохранения энергии. Изначально в баке было 36 кВт энергии, забрали 18 кВт осталось 18 кВт. Эти 18 кВт энергии содержат воду с температурой 45 градусов. То есть 70 градусов поделили пополам получили 35 градусов. 35 градусов + 10 градусов холодной воды получаем температуру 45 градусов.

Давайте теперь попробуем найти объем бака при нагреве бойлера до 90 градусов.

Использованная энергия потребления горячей воды на выходе из крана 18317 Вт

Ответ: Объем бака 350 литров. Повышение всего на 10 градусов уменьшило объем бака на 100 литров.

Источник

Оцените статью