КИСЛОТНЫЕ СВОЙСТВА ВОДЫ:
1. С ЩЕЛОЧНЫМИ И ЩЕЛОЧНОЗЕМЕЛЬНЫМИ МЕТАЛЛАМИ:
С натрием, калием и кальцием вода реагирует при обычной температуре; с магнием — при кипении.
2. С АМФОТЕРНЫМИ МЕТАЛЛАМИ:
С цинком реакция идет при кипячении; с алюминием, если он без оксидной пленки в виде амальгамы (раствор в ртути) — при обычной температуре; с железом — при высокой температуре (красного каления),
3. С ОКСИДАМИ АКТИВНЫХ МЕТАЛЛОВ:
Например, вода взаимодействует с оксидом калия, оксидом кальция (оксиды всех металлов, стоящих в ряду напряжений до Mg включительно).
Вода является донором протона, т.е. по теории Лоури-Бренстеда — кислотой. Поэтому, она способна реагировать с аммиаком, как кислота, с образованием катиона аммония.
5. ГИДРОЛИЗ СОЛЕЙ:
Соли, образованные слабыми основаниями, гидролизуются водой. Например, с хлоридом
меди (II), гидролиз идет ступенчато.
(I ступень)
ОСНОВНЫЕ СВОЙСТВА ВОДЫ:
1. С КИСЛОТНЫМИ ОКСИДАМИ: Например, реакция воды с оксидом серы (VI) приводит к образованию серной кислоты.
В данном случае вода является акцептором протона, т.е. по теории Лоури-Бренстеда — основанием. При взаимодействии воды с хлороводородом образуется ион гидроксония (H 3 O) + .
3. ГИДРОЛИЗ СОЛЕЙ
Соли, образованные слабыми кислотами, гидролизуются водой. Для многоосновных кислот реакция идет ступенчато.
(I ступень)
ВОССТАНОВИТЕЛЬНЫЕ СВОЙСТВА ВОДЫ:
Атом кислорода имеет в воде степень окисления -2, что обуславливает свойства воды как восстановителя.
1. С фтором (F 2 ), хлором (Cl 2 ):
Фтор вытесняет кислород. С хлором (Cl 2 ), реакция протекает через образование HCl и HClO.
Электролиз является реакцией внутримолекулярного окисления-восстановления.
3. С молекулярным кислородом (O):
Вода окисляется кислородом с образованием пероксида кислорода, при этом кислород восстанавливаеся до степени окисления -1.
ОБРАЗОВАНИЕ ГИДРАТОВ И КЛАТРАТОВ:
1. С серной кислотой (H 2 SO 4 ):
С серной кислотой вода образует гидраты.
Вода с солями может образовывать кристаллогидраты. Например, с сульфатом меди (II).
Образование клатратов (соединений включения газов с структуру воды) связано с проникновением молекул газа в «пустоты», образуемые за счет водородных связей. Эти соединения неустойчивы и существуют за счет слабых межмолекулярных взаимодействий и пространственных затруднений, которые возникают при выходе из «водяного каркаса».
С ОРГАНИЧЕСКИМИ ВЕЩЕСТВАМИ:
1. С алкенами (C n H 2n ) (ПРИСОЕДИНЕНИЕ):
Например, при взаимодействии с этиленом получается этиловый спирт. Катализатор — серная кислота.
2. С алкенами (C n H 2n ) (ОКИСЛЕНИЕ):
Взаимодействие этилена с водным раствором перманганата калия ведет к образованию этиленгликоля (реакция Вагнера).
3. С алкинами (C n H 2n-2 ):
В писутствии соли ртути (II) в кислой среде, вода реагирует с ацетиленом, образуя уксусный альдегид (реакция Кучерова).
O
| |
5. Со сложными эфирами (СR- C -O-R):
Сложные эфиры обратимо гидролизуются водой с образованием соответсвующих кислоты и спирта(реакция идет в присутствии концентрированной серной кислоты).
6. С карбидом кальция (CaC 2 ):
Гидролиз карбида кальция идет с образованием ацетилена и Ca(OH) 2
7. С ПОЛИСАХАРИДАМИ:
Гидролиз полисахаридов приводит к образованию моносахаридов. Реакция идет в присутствии кислоты, щелочи или ферментов. Например гидролиз крахмала или клетчатки.
Источник
Химия, Биология, подготовка к ГИА и ЕГЭ
Размышления ( не учебный материал . ) на тему
свойств молекулы воды
Автор статьи — Саид Лутфуллин
Самое распространенное вещество на нашей планете. Без нее не было бы жизни. Все живые структуры, за исключением вирусов, по большей части состоят из воды. На ее примере детям в школе объясняют строение молекул, химические формулы. Свойства, характерные только для воды, используются в живой природе, а так же в хозяйственной жизни человека.
С детства нам знакомое вещество, никогда не вызывавшее каких-то вопросов. Ну вода, и что? А в таком простом, казалось бы, веществе скрыто много загадок.
свойства молекулы воды
Вода — основной природный растворитель. Все реакции в живых организмах так или иначе протекают в водной среде, вещества реагируют в растворенном состоянии.
У воды отличная теплоемкость, но довольно малая теплопроводность. Это позволяет использовать воду как транспорт тепла. На этом принципе основан механизм охлаждения многих организмов. А в атомной энергетике и воду, благодаря этому свойству, используют в качестве теплоносителя.
В воде не только протекают реакции, она сама вступает в реакции. Гидратация, фотолиз и т. д.
Это только некоторые свойства, ни одно вещество не может похвастаться таким наборов свойств. Поистине это вещество уникально.
Ну а теперь ближе к теме.
Всегда, везде, даже в школе на уроках химии ее называют просто «вода».
А вот какое химическое называние и свойства молекулы воды?
На просторах интернета и учебной литературы можно встретить такие называния: оксид водорода, гидроксид водорода, гидроксильная кислота. Это самые наиболее часто встречающиеся.
Так к какому все таки классу неорганических веществ относится вода?
Давайте разберемся в этом вопросе.
Ниже приведена схема:
вода — точно не простое вещество, так как образована атомами разных элементов;
и не соль, так как связь в солях между катионом и анионом должна быть ионной, катионом должен быть металл, а в молекуле воды связи только ковалентные и катион — водород (неметалл).
Для начала разберемся — оксид это или гидроксид. Что с уверенностью можно сказать, так это то, что вода — это точно не оксид.
Хотя, если поверхностно посмотреть, то вода, в принципе, попадает под определение оксида водорода. Образуется в результате реакции полного окисления водорода: 2H2 + O2 → 2H2O, кислород в низшей степени окисления.
Рассмотрим по свойствам :
Свойства основных оксидов:
Взаимодействие с кислотами.
Взаимодействие с кислотными оксидами.
Взаимодействие с амфотерными оксидами.
Молекула воды обладает только одним свойством основного оксида — это взаимодействие с кислотными оксидами.
Свойства кислотных оксидов:
Взаимодействие со щелочами.
Взаимодействие основными оксидами.
Взаимодействие амфотерными оксидами.
Молекула воды так же проявляет только одно свойство: взаимодействие основными оксидами.
По свойствам молекула воды проявляет двойственную природу : реагирует с кислотными и основными оксидами.
Но воду нельзя отнести к амфотерным оксидам, так как амфотерные оксиды образуют металлы, а водород — неметалл.
Выходит, если вода — все таки оксид, значит несолеобразующий.
Но, может это будет сенсацией, ВОДА ОБРАЗУЕТ СОЛИ!
Но об этом немного позже.
Из приведенных выше доказательств следует, что вода — не оксид. Еще один аргумент «против оксида»: ни один оксид не диссоциирует на ионы, а одно из свойств молекулы воды — частичная диссоциация на катион H + и анион OH — .
Исходя из предыдущего: в воде два «разных» водорода. Один в катионе, другой — в анионе.
И формулу воды следует писать не так как мы привыкли: H2O, а
HOH
Следовательно, вода — это гидроксид.
Эта версия более правдоподобна: гидроксильная группа явно намекает на что-то подобное. Но какой гидроксид? Давайте опять разберем по свойствам гидроксиды:
Свойства основных гидроксидов (оснований):
Для растворимых оснований (щелочей):
Для растворимых оснований (щелочей) характерны реакции ионного обмена.
Взаимодействие растворимых оснований (щелочей) с кислотными основаниями.
Взаимодействие с амфотерными гидроксидами.
Нерастворимые основания разлагаются при нагревании.
Молекула воды не проявляет ни одного свойства, только разве что, при сильном нагревании, она подвергнется разложению, ну а это со всеми веществами так — есть определенный порог температуры, выше которого связи не могут больше существовать и разрушаются.
Так же аргумент, «против» амфотерного и основного гидроксида — основные и амфотерные гидроксиды образуют только металлы.
Теперь подходим к самой интересной части. Выходит, что вода — это
кислотный гидроксид, то есть кислородосодержащая кислота.
Рассмотрим по свойствам.
Для кислотных гидроксидов характерны:
Реакции с металлами.
Реакции с основными и амфотерными оксидами.
Реакции с основаниями и амфотерными гидроксидам.
Реакции с солями.
Для сильных кислот так же реакции ионного обмена.
Вытеснение более слабых, а так же летучих кислот из солей.
Для молекулы воды характерны почти все эти свойства.
- Реакции с металлами. Не все металлы способны реагировать с водой. Вода как кислота — очень слабая, но, тем не менее, это свойство она проявляет:
HOH + Na → NaOH + H2↑ — из воды вытесняется водород — вода ведет себя, как большинство кислот.
- Реакции с основными и амфотерными оксидами. С амфотерными оксидами не реагирует, так как кислотные свойства слабые, но реагирует с основными оксидами (не со всеми правда, это объясняется слабыми кислотными свойствами):
HOH + Na2O → 2NaOH
- Реакции с основаниями и амфотерными гидроксидам. Тут вода не может похвастаться такими реакциями — из-за своей слабости как кислоты.
- Реакции с солями. Некоторые соли подвергаются гидролизу — как раз таки реакции с водой.
Эта реакция так же иллюстрирует последнее свойство — вытеснение кислоты, у воды получается вытеснить сероводород.
Из определения: «кислота — это сложное вещество, состоящее из водорода и кислотного остатка, при диссоциирующее на катион H + и катион кислотного остатка«.
Все подходит. И получается, что кислотный остаток — это гидроксильная группа OH.
И, как я и говорил раньше, вода образует соли, выходит, что соли воды-кислоты — это основные и амфотерные гидроксиды: металл, соединенный с кислотным остатком (OH).
И схемы реакций:
кислота + металл → соль + водород (в общем случае)
HOH + Na → NaOH + H2↑
кислота + основный оксид → соль вода
HOH + Na2O → 2NaOH (соль образуется, только воды не образуется, да и с чего бы это вдруг в результате реакции с водой, должна образовываться вода)
соль + кислота → другая кислота + другая соль
Итак, мы пришли к выводу, что амфотерные и основные гидроксиды — это соли воды — кислоты.
Тогда как их называть?
Весть термин «гидроксид» также применим к кислородосодержащим кислотам. По правилам получается:
название иона + ат = Гидрокс + ат.
Соли воды — гидроксаты.
Вода настолько слабая кислота, что проявляет некоторые амфотерные свойства, например реакции с кислотными оксидами.
И в воде нейтральная среда, а не кислая, как во всех кислотах — это исключение из правила.
Но в конце концов, как говорил замечательный русский химик-органик «Неосуществимых реакций нет, а если реакция не идет, то еще не найден катализатор».
Сформулируем основные положения теории «Вода — кислота»:
Молекула воды по свойствам — слабая (очень слабая) кислота.
Вода настолько слабая, что проявляет амфотерные свойства и у нее нейтральная реакция среды.
Вода как кислота образует соли — гидроксаты.
К гидроксатам относятся амфотерные и основные гидроксиды.
Формула воды: HOH.
Правильные названия воды: гидроксид водорода, гидроксильная кислота.
Источник
Химические свойства воды
Вода окружает нас повсюду, без неё человек не может жить. Мы на каждом шагу встречаемся с собственно водой и с водными растворами (например, морской водой или даже водопроводной). А может ли вода вступать в химические реакции и в каких случаях это происходит? Сейчас мы это и узнаем.
Химические свойства воды
1. Вода при высокой температуре или пропускании тока разлагается на газообразные водород кислород:
2. Вода взаимодействует с активными металлами с образованием гидроксидов и газообразного водорода. К активным металлам относятся металлы первой и второй групп таблицы Менделеева. С щелочными металлами (металлы первой группы) реакции идут довольно активно, поскольку газообразный водород выделяется бурно, поэтому проводить их нужно очень аккуратно. Уравнение реакции между щелочным металлом калием и водой выглядит так:
2К + 2Н2О = 2КОН + Н2
Аналогично протекают и реакции между щелочно-земельными металлами (металлами второй группы) и водой.
3. Вода взаимодействует с менее активными металлами с образованием оксидов и газообразного водорода. Например, цинк при взаимодействии с водой даёт оксид цинка и водород:
Zn + O2 = ZnO + H2
С инертными металлами (в ряду напряжений они стоят после водорода) вода не взаимодействует.
4. Вода взаимодействует с основными оксидами с образованием гидроксидов :
МgO + H2O = Mg(OH)2
5. Вода взаимодействует с кислотными оксидами с образованием кислот:
SO3 + H2O = H2SO4
А ещё воды является чуть ли не главным растворителем. В ней растворяются и газы, и жидкости и твёрдые вещества, причём в зависимости от условий можно получать самые разные растворы. С образованием растворов связано понятие массовой доли растворённого вещества . Понимать, как рассчитывать массовую долю растворённого вещества, очень важно, поскольку в неорганической химии много задач связано именно с этим.
Пишите, пожалуйста, в комментариях, что осталось непонятным, и я обязательно дам дополнительные пояснения. Жалуйтесь на сложности в изучении школьного курса и говорите, что вас испугало в учебнике химии. И тогда следующая статья будет рассказывать именно об этой проблеме.
Источник