Вода самое распространенное вещество во вселенной

Наука. Вода во Вселенной

В поисках внеземной жизни достигнут очередной прорыв. Группа английских и французских ученых при помощи инфракрасного телескопа «Спитцер» рассмотрела планету вне Солнечной системы, относящуюся к классу «горячих юпитеров», на которой находятся крупные запасы воды в газообразном состоянии. По утверждениям астрофизиков, этот факт свидетельствует о том, что воды во Вселенной намного больше, чем считалось до сих пор. Она присутствует практически везде, в том числе и в межзвездных облаках. И очень высока вероятность того, что у ближайших к Солнцу звезд есть скалистые планеты земного типа, на которых плещутся океаны.

Открытие воды на планете, удаленной от нас на расстояние 64 световых лет, было сделано не случайн

о. Ученые из Парижского астрофизического института и Лондонского университетского колледжа охотились за водой в других звездных системах долгие месяцы. Для исследований было выбрано несколько претендентов. Одним из них стала звездная система в созвездии Лисичка. При анализе снимков, полученных с инфракрасного космического телескопа NASA «Спитцер», ученые натолкнулись на линию воды в спектре излучения звезды. А так как температура в звездах достаточно велика, чтобы вода могла находиться в ней даже в газообразном состоянии, то был сделан вывод о том, что вода, отметившаяся в спектре, принадлежит планете HD 189733b. «Открытие было сделано в тот самый момент, когда планета проходила по диску своей звезды, — рассказывает руководитель группы исследователей Джованна Тинетти. — Яркие лучи подсветили ее, и вода, находящаяся на планете в газообразном состоянии, дала о себе знать. Спектр света приобрел соответствующий рисунок. И мы его зафиксировали».

Читайте также:  Лимон вода при тошноте

HD 189733b относится к классу так называемых «горячих юпитеров», то есть к планетам, очень похожим на этот газовый гигант. Планета в 30 раз ближе к своей звезде, чем Земля к Солнцу, и период ее обращения составляет примерно двое земных суток. Из-за близости к светилу температура на поверхности планеты достигает 1000С. Между тем этого достаточно, чтобы на ней существовала вода в газообразном состоянии. Более того, по заявлениям ученых, вода на ночной стороне планеты, где температура уже 450, может формировать раскаленные облака, которые с ветрами дрейфуют по «горячему юпитеру».

«Наше открытие свидетельствует о том, что вода может быть более распространена в космосе, чем было принято думать до этого, — продолжает Джованна Тинетти. —Конечно, условия на планете не позволяют говорит о зарождении там жизни. Но наш метод может использоваться в будущем, чтобы изучить внеземные миры, похожие на Землю. Главные поиски воды развернутся не на газовых гигантах, а на скалистых планетах земной группы. Именно там могут сложиться условия, пригодных для зарождения жизни».

«Конечно, многие полагают, что мы не единственные живые существа во Вселенной, — рассказывает РБК daily заведующий лабораторией физики и эволюции звезд Института астрономии РАН, доктор физико-математических наук Александр Тутуков. — Если жизнь могла появиться на Земле, почему бы ей не зародиться и на других планетах, сходных с Землей? Вот почему поиски миров, чем-то похожих на Землю, так занимают ученых. Обнаружение экзопланет, то есть планет, находящихся за пределами Солнечной системы, идет по двум алгоритмам. Первый — это нахождение звезд по небольшим отклонениям, происходящим вследствие гравитационных воздействий крупных планет. Но существует и другой, так называемый затменный способ. Время от времени с Земли можно зафиксировать прохождение крупной планеты по диску звезды. Получается небольшое затмение, и звезда теряет часть светимости. Падение блеска составляет всего 0,01% обычно излучаемого света, но современное оборудование позволяет его зафиксировать. Таким образом находятся очень большие планеты, похожие на Юпитер. Этот способ позволяет измерять и их спектр, а по нему в свою очередь и состав самой планеты».

Читайте также:  Зачем мобильному кондиционеру вода

Однако отследить затмение малой планеты земной группы, и тем более измерить ее спектр, достаточно сложно. Именно поэтому скалистые планеты земного типа, находящиеся от своих солнц на расстоянии, необходимом, чтобы там была вода в жидком состоянии, показываются землянам нечасто. Поиски могут затянуться. «Впрочем, присутствие воды на других планетах можно предсказать теоретически, — отмечает Александр Тутуков. — Ее поиски в общем-то и не нужны. И без того ясно, что вода есть на многих планетах. С химической точки зрения самые распространенные элементы во Вселенной это водород, гелий и кислород. Они легко вступают во взаимодействие, и на тех планетах, где прохладнее, чем на поверхности звезд, легко образуется вода».

«Присутствие воды отмечается не только на поверхности планет, но и в открытом космосе, — рассказывает РБК daily сотрудник Института астрономии РАН, доктор физико-математических наук Александр Багров. — Она наблюдается в межзвездных облаках». В холодных областях космоса, где температура близка к абсолютному нулю, концентрация водяного пара в облаках межзвездного газа незначительна. Но вот рядом с молодыми звездами водяные пары присутствуют в изобилии. Температуры там высокие, и облака разреженного газа превращаются в гигантские химические фабрики по производству воды.

«На нашей планете присутствие воды необходимо для зарождения жизни, — продолжает Александр Тутуков. — Без нее жизнь погибает. Следовательно, то же самое должно быть и на других планетах. Конечно, теоретически могут существовать формы жизни, обходящиеся без воды, но пока они не обнаружены, да и вряд ли будут найдены в ближайшее время. И ученые в поисках внеземной жизни ориентируются именно на миры земного типа. И если вода присутствует везде во Вселенной, то есть очень большой шанс, что жизнь, похожая на земную, существует где-нибудь еще во Вселенной».

Источник

Вода необычной формы может быть самой распространенной во Вселенной

Недавно в Лаборатории лазерной энергетики в Брайтоне, штат Нью-Йорк, один из самых мощных лазеров в мире ударил в каплю воды, создав ударную волну, которая подняла давление в этой воде до миллионов атмосфер, а температуру — до тысяч градусов. Рентгеновские лучи, которые прошли через эту каплю в ту же долю секунды, явили человечеству первый проблеск воды в таких экстремальных условиях. Они показали, что вода внутри ударной волны не стала перегретой жидкостью или газом. Нет, вода замерзла.

Оказывается вода может быть разной формы.

Как это ни парадоксально, атомы воды замерзли, образовав кристаллический лед. Впрочем, как и предполагали физики, щурящиеся на экраны в соседней комнате.

«Вы слышите выстрел и в тот же момент видите, что произошло нечто интересное», говорит Мариус Милло из Ливерморской национальной лаборатории им. Лоуренса, который проводил эксперимент вместе с Федерикой Коппари.

Что происходит с водой при высоком давлении и температуре?

Результаты этой работы, опубликованной на этой неделе в Nature, подтверждают существование «суперионного льда», новой фазы воды с причудливыми свойствами. В отличие от знакомого вам льда, который можно найти в морозилке или на северном полюсе, суперионный лед черный и горячий. Кубик такого льда весил в четыре раза больше обычного. Впервые его существование было предсказано более 30 лет назад, и хотя его до сих пор никогда не видели, ученые считают, что он может быть одним из самых распространенных видов воды во Вселенной.

Даже в Солнечной системе большая часть воды, вероятно, находится в форме суперионного льда — в недрах Урана и Нептуна. Ее больше, чем жидкой воды в океанах Земли, Европы и Энцелада. Открытие суперионного льда могло бы решить старые загадки о составе этих «ледяных гигантов».

Ученые уже обнаружили восемнадцать изумительных архитектур ледяного кристалла, включая гексагональное расположение молекул воды в обычном льду (Ih). После льда-I, который бывает двух форм, Ih и Ic, остальные формы пронумерованы от II до XVII по порядку открытия. Да, «лед-9» на самом деле существует, но его свойства вовсе не такие, как в романе Курта Воннегута «Колыбель для кошки».

Суперионный лед может претендовать на мантию льда-XVIII. Это новый кристалл, но есть в нем одно но. Все ранее известные водяные льды состоят из неповрежденных молекул воды, в которых один атом кислорода связан с двумя атомами водорода. Но суперионный лед, как показывают новые измерения, не такой. Он существует в некоем сюрреалистическом лимбе, наполовину твердом, наполовину жидком. Отдельные молекулы воды распадаются. Атомы кислорода формируют кубическую решетку, но атомы водорода разливаются свободно, протекая, как жидкость, через жесткую клетку кислорода.

Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.

Специалисты говорят, что обнаружение суперионного льда оправдывает компьютерные прогнозы, которые могут помочь физикам-материаловедам создавать будущие вещества с индивидуальными свойствами. А обнаружение этого льда требовало сверхбыстрых измерений и точного контроля температуры и давления, что стало возможным лишь в условиях усовершенствования экспериментальных методов.

«Все это было невозможно сделать, скажем, пять лет назад», говорит Кристоф Зальцманн из Лондонского университетского колледжа, который открыл льды-XIII, -XIV и XV. «Это безусловно окажет огромное влияние».

Физик Ливия Бове из Национального центра научных исследований Франции считает, что поскольку молекулы воды распадаются, это не совсем новая фаза воды. «Это новое состояние вещества, что довольно впечатляюще».

Паззлы на льду

Физики охотились за суперионным льдом много лет — с тех пор, как примитивная компьютерная симуляция Пьерфранко Демонтиса в 1988 году предсказала, что вода примет эту странную, почти металлическую форму, если вытолкнуть ее за пределы карты известных ледяных фаз.

Моделирование показало, что под сильным давлением и теплом молекулы воды разрушаются. Атомы кислорода заключаются в кубическую решетку, а «водород начинает прыгать из одного положение в кристалле в другое, снова и снова», говорит Милло. Эти прыжки между узлами решетки настолько быстрые, что атомы водорода — которые ионизируются, превращаясь, по сути, в положительно заряженные протоны — ведут себя как жидкость.

Появилось предположение, что суперионный лед будет проводить электричество, как металл, и водород будет выполнять роль электронов. Наличие этих свободных атомов водорода также усилит беспорядочность льда, его энтропию. В свою очередь, увеличение энтропии сделает лед стабильнее, чем другие виды ледяных кристаллов, в результате чего его температура плавления вырастет.

Представить это все легко, поверить в это — трудно. Первые модели использовали упрощенную физику, продираясь сквозь квантовую природу реальных молекул. Более поздние симуляции добавили больше квантовых эффектов, но все же обошли фактические уравнения, необходимые для описания взаимодействия нескольких квантовых тел, которое слишком трудно рассчитать. Вместо этого они полагались на приближения, что повышало вероятность того, что весь этот сценарий окажется миражом в симуляции. Эксперименты, между тем, не могли создать необходимое давление и произвести достаточно тепла, чтобы расплавить это прочное вещество.

И когда все уже забросили эту затею, планетологи высказали собственные подозрения, что у воды может быть суперионная фаза льда. Примерно в то же время, когда эта фаза была впервые предсказана, зонд «Вояджер-2» отправился во внешнюю солнечную систему и обнаружил что-то странное в магнитных полях ледяных гигантов Урана и Нептуна.

Поля вокруг других планет Солнечной системы, по-видимому, состоят из строго определенных северного и южного полюса, без особой другой структуры. Похоже на то, как будто в них находятся стержневые магниты, выровненные по осям вращения. Планетологи связывают это с «динамо»: внутренними областями, где проводящие жидкости поднимаются и вращаются по мере вращения планеты, создавая огромные магнитные поля.

Напротив, магнитные поля, исходящие от Урана и Нептуна, выглядели более громоздкими и сложными, с более чем двумя полюсами. Они также не выравнивались близко к вращению своих планет. Один из способов добиться такого состоит в том, чтобы каким-то образом ограничить проводящую жидкость, ответственную за динамо, лишь тонкой внешней оболочкой планеты, вместо того, чтобы позволить ей проникнуть внутрь ядра.

Но идея о том, что эти планеты могут иметь твердые ядра, не способные генерировать динамо, не казалась реалистичной. Если бы вы пробурили эти ледяные гиганты, вы бы ожидали сперва столкнуться со слоем ионной воды, которая будет течь, проводить токи и участвовать в динамо. Кажется, что даже более глубокий материал, даже при более высоких температурах также будет жидкостью, но это наивно. У планетологов есть шутка о том, что недра Урана и Нептуна вообще не могут быть твердыми. Но оказалось, что могут.

Взрывной лед

Коппари, Милло и их команда собрали кусочки головоломки вместе.

В более раннем эксперименте, опубликованном в феврале 2018 года, физики получили косвенные доказательства существования суперионного льда. Они сжимали каплю воды комнатной температуры между заостренными концами двух ограненных алмазов. Когда давление поднялось примерно до гигапаскаля, что примерно в 10 раз больше, чем на дне Марианской впадины, воды превратилась в тетрагональный кристалл, лед-VI. На 2 гигапаскалях он перешел в лед-VII, более плотную, кубическую форму, прозрачную для невооруженного глаза, которая, как недавно обнаружили ученые, также существует в крошечных карманах внутри природных алмазов.

Такая вода нам привычна.

Затем, используя лазер OMEGA в Лаборатории лазерной энергетики, Милло и его коллеги нацелились на лед-VII, все еще зажатый между алмазными наковальнями. Когда лазер ударил по поверхности алмаза, он испарил материал вверх, по сути отбросив алмаз в противоположном направлении и отправив ударную волну через лед. Команда Милло обнаружила, что сверхсдавленный лед расплавился при температуре порядка 4700 градусов по Цельсию, как и ожидалось для суперионного льда, и что он проводил электричество, благодаря движению заряженных протонов.

После того, как прогнозы относительно объемных свойств суперионного льда подтвердились, новое исследование Коппари и Милло должно было подтвердить его структуру. Если вы хотите подтвердить кристаллическую природу, вам нужна дифракция рентгеновских лучей.

Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.

Их новый эксперимент пропустил лед-VI и лед-VII вообще. Вместо этого команда просто разбила воду между алмазными наковальнями лазерными выстрелами. Спустя миллиардные доли секунды, пока ударные волны проникали сквозь и вода начала кристаллизоваться в нанометровые кубики льда, ученые добавили еще 16 лазерных лучей, чтобы испарить тонкий кусок железа рядом с образцом. Получившаяся плазма залила кристаллизующуюся воду рентгеновскими лучами, которые затем дифрагировали от кристаллов льда и позволили команде различить их структуру.

Атомы в воде перестроились в давно предсказанную, но никогда ранее не виданную архитектуру, лед-XVIII: кубическую решетку с атомами кислорода на каждом углу и в центре каждой грани.

«Это настоящий прорыв», говорит Коппари.

«Тот факт, что существование этой фазы не является артефактом квантово-молекулярного динамического моделирования, а вполне реально — это очень радует», говорит Бове.

Что такое супер лед

И такого рода успешная перекрестная проверка как моделирования, так и настоящего суперионного льда предполагает, что конечная «мечта» исследователей физики материалов может быть вскоре достигнута. «Вы говорите мне, какие свойства материала вам нужны, мы идем к компьютеру и теоретически выясняем, какой материал и какая кристаллическая структура вам нужна», говорит Раймонд Джанлоз, ученый Калифорнийского университета в Беркли.

Новый анализ также намекает на то, что хотя суперионный лед действительно проводит некоторое электричество, он является рыхловатым, но твердым веществом. Он будет понемногу растекаться, но течь — нет. Таким образом, жидкие слои внутри Урана и Нептуна могут остановиться примерно на 8000 километрах вглубь планеты, где начнется огромная мантия зыбкого суперионного льда. Это ограничивает большинство действий динамо на меньших глубинах, учитывая необычные поля планет.

Другие планеты и луны Солнечной системы, вероятно, не располагают внутренними температурами и давлениями, которые позволили бы существовать суперионному льду. Но множество экзопланет размеров ледяных гигантов позволяют предположить, что это вещество — суперионный лед — будет распространен в ледяных мирах по всей галактике.

Конечно, ни одна планета не будет содержать одну только воду. Ледяные гиганты в нашей Солнечной системе также замешаны из метана и аммиака. Степень, в которой суперионное поведение на самом деле находит место в природе, «будет зависеть от того, существуют ли эти фазы, когда мы замешиваем воду с другими материалами», говорят ученые. Впрочем, суперионный аммиак также должен существовать.

Эксперименты продолжаются. Как думаете, узнаем ли мы однажды, что находится в центре крупнейших тел в нашей Солнечной системе? Поделитесь мнением в нашем чате в Телеграме.

Источник

Оцените статью