Капиллярные эффекты
Капиллярные эффекты (капиллярное давление и капиллярная пропитка) — поверхностные явления в пористых средах, возникающие вследствие наличия преимущественной смачиваемости поверхности поровых каналов.
Если капилляр привести в контакт со смачивающей его поверхность жидкостью, то стремясь сократить избыточную поверхностную энергию, жидкость начнет самопроизвольно двигаться по капилляру. В вертикальном капилляре жидкость будет подниматься до тех пор, пока поверхностные силы не будут уравновешены весом столба жидкости. Высоту столба жидкости можно охарактеризовать гидростатическим давлением, соответственно уравновешивающие его в капилляре поверхностные силы можно представить как капиллярное давление. Капиллярное давление рк связано с радиусом капилляра следующим соотношением:
рк = 2 * ό * соsӨ / г (3.14)
Капиллярное давление выражает разность давления в смачивающей и несмачивающей фазах. Оно направлено в сторону Iнамачивающейся фазы. В зависимости от характера смачиваемости породы капиллярное давление может способствовать вытеснению Нефти из породы или же препятствовать ему.
Рис. 3.8. Характер вытеснения нефти водой в гидрофобном (а) и гидрофильном (б) пластах.
Под действием капиллярного давления смачивающая фаза может самопроизвольно впитываться в пористую среду, вытесняя из нее несмачивающую фазу.
Так как смачивающая жидкость обладает меньшей свободной поверхностной энергией, а мелкие поры — большей удельной поверхностью, то смачивающая и несмачивающая фазы самопроизвольно перераспределяются в пористой среде таким образом, чтобы смачивающая фаза занимала мелкие поры, а не смачивающая — крупные. При таком распределении фаз достигается минимум свободной поверхностной энергии. Явление, при котором смачивающая жидкость внедряется в пористую среду исключительно под действием капиллярных сил, называется капиллярной пропиткой.
На рис. 3.8 показан характер вытеснения нефти водой из гидрофобного и гидрофильного пластов. В гидрофобной породе вода как несмачивающая фаза движется по наиболее широким порам, а нефть — смачивающая фаза, покрывает поверхность зерен и остается в сужениях поровых каналов. Капиллярное давление, направленное в сторону несмачивающей фазы (воды), препятствует проникновению воды в мелкие поры, занятые нефтью. В гидрофильной породе вода под действием капиллярного давления вытесняет нефть из сужений в крупные поры. В них нефть после вытеснения остается в виде отдельных капель, окруженных водной фазой. Общее количество остаточной нефти в гидрофильных коллекторах значительно меньше по сравнению с гидрофобными. Особенно важную роль капиллярная пропитка играет в породах с сильно неоднородными коллекторскими свойствами и пористо — трещинноватых коллекторах.
Источник
Основные понятия поверхностных и капиллярных сил
При рассмотрении углеводородных систем необходимо учитывать не только силы, возникающие на границе раздела газа и жидкости, но также и силы, действующие на границе раздела между двумя несмешивающимися жидкими фазами и между жидкостями и твердыми телами. Комбинация всех действующих поверхностных сил определяет смачиваемость и капиллярное давление в пористой среде.
Смачиваемость. Адгезионное натяжение (работа адгезии), являющееся функцией поверхностного натяжения, определяет, какая из двух исследуемых фаз лучше смачивает поверхность твердого тела. Рисунок 8 иллюстрирует случай, когда в контакте с твердым телом находятся две жидкости (нефть и вода). По определению, угол смачивания q измеряется в сторону жидкой фазы, имеющей большую плотность, и изменяется от 0 до 180 о . В соответствии с этим определением адгезионное натяжение можно выразить следующим образом:
, 21
где Ан — адгезионное натяжение; sтн— поверхностное натяжение на границе раздела нефть — твердое тело; sтв — поверхностное натяжение на границе раздела вода — твердое тело; sвн — поверхностное натяжение на границе раздела вода — нефть.
Положительная величина адгезионного натяжения указывает на то, что вода избирательно лучше смачивает поверхность твердого тела. Если адгезионное натяжение равно нулю, следовательно, обе фазы имеют одинаковое сродство с твердым телом. Величина адгезионного натяжения, определяемая выражением 21, характеризует способность смачивающей фазы прилипать к твердому телу и растекаться по его поверхности. При высоком значении адгезионного натяжения или, что одно и то же, при малом угле смачивания вода будет быстро растекаться по поверхности твердого тела, стремясь покрыть эту поверхность. Если угол избирательного смачивания велик, то для того, чтобы заставить воду растекаться по поверхности, потребуется внешний источник энергии. В связи с этим смачивающая фаза стремится занять пустоты наименьших разиеров, а несмачивающая – более крупные открытые каналы. Для системы «нефть — вода — твердое тело» в зависимости от химического состава фаз и породы поверхность твердого тела может быть или гидрофильной ( q>0) или гидрофобной( q
Давление в жидкой фазе в капилляре под границей раздела газ – жидкость меньше, чем давление в газовой фазе над этой границей. Разница давлений по обе стороны границы раздела называется капиллярным давлением системы рк.Из приравнивания сил веса жидкости и подъёмной на поверхности раздела в капилляре получим выражение для определения капиллярного давления, как функции поверхностных сил
. 22
Из данного соотношения видно, что к увеличению высоты подъёма воды в капилляре приводит уменьшение радиуса капилляра и уменьшение угла смачивания .
Последнее объясняет образование языков заводнения через наименее проницаемые коллектора.
Следует отметить, что характер кривизны поверхности раздела таков, что давление в несмачивающей фазе больше, чем давление в смачивающей фазе. Поэтому в пористой среде смачивающая фаза находится под меньшим давлением, чем несмачивающая.
|
Порядок насыщения пористой среды. Для изучения влияния порядка насыщения пористой среды необходимо рассмотреть вопрос о порах переменного размера. Для капиллярной трубки переменного диаметра высота подъема жидкости зависит от адгезионного натяжения, плотности жидкости и изменения диаметра капилляра по длине. Если к поверхности раздела фаз в таком капилляре приложено давление, то эта поверхность будет стремиться занять новое равновесное положение, в результате чего объем жидкости в капилляре уменьшится. Уменьшение объема воды означает уменьшение ее насыщенности и сопровождается увеличением капиллярного давления.
Таким образом, между капиллярным давлением и насыщенностью смачивающей фазы имеется обратная функциональная зависимость и более низким насыщенности соответствуют меньшие значения радиусов кривизны поверхности раздела. Поэтому смачивающая фаза будет занимать мелкие тупиковые и открытые поры системы, оставляя большие открытые каналы несмачивающей фазе. Насыщенность является не только функцией капиллярного давления, но зависит также от порядка насыщения пористого материала.
Например, в непрерывной капиллярной трубке, подобной изображенной на рис. 10, насыщенность при одних и тех же значениях капиллярного давления зависит от того, была ли первоначально система целиком заполнена смачивающей фазой или только начинает насыщаться ею. При поступлении несмачивающей фазы в трубку, заполненную смачивающей фазой, вытеснение последней будет происходить до тех пор, пока капиллярное давление не станет равно сумме приложенного давления и давления, создаваемого столбом оставшейся смачивающей жидкости. В случае, доказанном ва рис. 10а, порода насыщена смачивающей фазой на 80% при сравнительно более высоком значении капиллярного давления. Теперь рассмотрим случай, когда трубка первоначально заполнена несмачивающей фазой и погружена в сосуд с жидкостью, избирательно лучше смачивающей поверхность трубки. Смачивающая фаза начнет самопроизвольно впитываться в трубку под действием силы адгезионного натяжения между ею и поверхностью трубки до тех пор, пока сила адгезии не .уравновесится силой веса столба жидкости. Как показано на рис. 10б, насыщенность в этом случае составляет только 10%. В приведенном примере разной насыщенности (10 и 80%) соответствует одинаковое капиллярное давление. Из этого весьма упрощенного примера видно, что соотношение между насыщенностью смачивающей фазы и капиллярным давлением зависит от порядка насыщения. Для процесса дренирования пористой системы может, быть получено большее значение насыщенности, чем для случая впитывания смачивающей фазы в эту пористую систему.
Таким образом, соотношение «капиллярное давление — насыщенность» зависит от: 1) размера пор и их распределения; 2) свойств насыщающих фаз и природы поверхности твердого тела, участвующих в этом процессе, и 3) порядка насыщения.
Источник
Вода смачивающая фаза то
Выполнила: Тюрина Анастасия.
Цель: узнать о явлениях смачивания и несмачивания, разобраться в причинах возникновения данных явлений.
Задачи:
— раскрыть основные понятия;
-выявить причины явлений смачивания и несмачивания;
-рассмотреть опыты, подтверждающие существование данных явлений;
-рассказать о существовании данных явлений в природе .
Смачивание и несмачивание (теория)
Если жидкость контактирует с твёрдым телом, то существуют две возможности:
1)молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведёт себя ртуть на стекле, вода на парафине или «жирной» поверхности. В этом случае говорят, что жидкость не смачивает поверхность;
2)молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведёт себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность.
Несмачивание — физическое явление отсутствия смачивания жидкостью поверхности материала.
Смачивание — физическое взаимодействие жидкости с поверхностью твёрдого тела или другой жидкости.
Смачивание бывает двух видов
-Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью )
-Контактное (состоит из 3х фаз — твердая, жидкая, газообразная)
Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания)- это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли. Мерой смачивания служит краевой угол θ — это угол между плоскостью, касательной к поверхности жидкости, и стенкой (плоскостью поверхности твердого тела). Внутри краевого угла всегда находится жидкость. Для смачивающей жидкости θ — острый, для несмачивающей θ — тупой. При полном смачивании θ = 0, при полном несмачивании θ = 180°.
Опыты, подтверждающие существование явлений смачивания и несмачивания
Положите рядом стеариновую и стеклянную пластинки. Капните из пипетки на каждую из них по маленькой капле воды. На стеариновой пластинке получится полушарие диаметром примерно 3 миллиметра, а на стеклянной пластинке капля растечется. Теперь возьмите стеклянную пластинку и наклоните ее. Капля уже и так растеклась, а теперь она потечет дальше. Молекулы воды охотнее притягиваются к стеклу, чем друг к другу. Другая же капля будет кататься по стеарину при наклонах пластинки в разные стороны. Удержаться на стеарине вода не может, она его не смачивает, молекулы воды притягиваются друг к другу сильнее, чем к молекулам стеарина.
Несмачивание в природе.
Роль поверхностных явлений в природе разнообразна. Например, поверхностная плёнка воды является для многих организмов опорой при движении. Такая форма движения встречается у мелких насекомых и паукообразных. Наиболее известны водомерки, опирающиеся на воду только конечными члениками широко расставленных лапок. Лапка, покрытая воскообразным налётом, не смачивается водой, поверхностный слой воды прогибается под давлением лапки, образуя небольшое углубление. Подобным образом перемещаются береговые пауки некоторых видов, но их лапки располагаются не параллельно поверхности воды, как у водомерок, а под прямым углом к ней.
Перья и пух водоплавающих птиц всегда обильно смазаны жировыми выделениями особых желёз, что объясняет их непромокаемость. Толстый слой воздуха, заключённый между перьями утки и не вытесняемый оттуда водой, не только защищает утку от потери тепла, но и чрезвычайно увеличивает запас плавучести, действуя подобно спасательному поясу.
Воскообразный налёт на листьях препятствует заливанию так называемых устьиц, которое могло бы привести к нарушению правильного дыхания растений. Наличием того же воскового налёта объясняется водонепроницаемость соломенной кровли, стога сена и т.д.
Заключение
Таким образом, явления смачивания и несмачивания имеют важное значение в природе, промышленной технологии, быту. Хорошее смачивание необходимо при крашении и стирке, обработке фотографических материалов, нанесении лакокрасочных покрытий, пропитке волокнистых материалов, склеивании, пайке, амальгамировании и т. д. Снизить смачивание до минимума стремятся при получении гидрофобных покрытий, гидроизоляционных материалов и др. В некоторых случаях, например при флотации и эмульгировании твёрдыми эмульгаторами, требуется сохранение краевых углов в определённом интервале значений. С. играет первостепенную роль в металлургических процессах, при диспергировании твёрдых тел в жидкой среде. Оно влияет на распространение грунтовых вод, увлажнение почв, разнообразные биологические и другие природные процессы.
Источник