Воду проводят по дереве

Проводящие ткани

«В природе нет ничего бесполезного» — Мишель де Монтень

Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня до клеток листа. Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) — 117 метров в высоту. И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку. Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты обмена веществ из них. Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям (восходящий ток) и от листьев к корням (нисходящий ток).

Читайте также:  Сколько дней можно пить укропную воду новорожденному

Логическим путем можно угадать многие научные факты, даже не зная их. К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани — ксилемы (древесины). От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани — флоэмы (луба).

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, превышающую массу самого сфагнума во 20-25 раз. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей. В толще проводящей ткани находятся отнюдь не только те самые трахеиды и сосуды, ее пронизывают многочисленные механические волокна — древесинные, обеспечивающие каркасность и прочность. В ксилеме содержатся также запасающие структуры, представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.

    Трахеиды

Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую, спиралевидную, кольчатую.

Длинные трубки, представляющие собой слияние отдельных мертвых клеток «члеников» в единый «сосуд». Ток жидкости идет из нижележащих отделов в вышележащие благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.

Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению он растягивается и обеспечивает ток воды и минеральных солей.

Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной клеточной стенкой, которая придает ксилеме механическую прочность.

Паренхимные клетки (древесинная паренхима)

Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Флоэма (луб)

Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания, подземные части, или «складировать» на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод — дисахарид сахароза.

Эта ткань представлена ситовидными трубками, генез (от греч. genesis — происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная флоэма — из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.

Разберемся с компонентами, которые входят в состав флоэмы:

    Ситовидные элементы

Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток — «члеников», соединенных в единую цепь. Между «члениками» имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито — вот откуда берется название ситовидных трубок 🙂

Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность ситовидных трубок.

Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

Паренхимные элементы (лубяная паренхима)

Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

Жилка

Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма — снизу. Над пучком и под ним располагаются уголковая или пластинчатая колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия, располагаются в центральном осевом цилиндре. Существует два вида жилок:

    Открытые

Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно обнаружить во всех органах двудольных растений.

Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань – склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и присасывающего листового.

Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться в сосуды.

Работа верхнего концевого двигателя заключается в транспирации — испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости. Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Как дерево впитывает и использует воду — 2021

«Ил-2 Штурмовик» нового поколения — «Битва за Сталинград» и «Битва за Москву» #13

  • «Ил-2 Штурмовик» нового поколения — «Битва за Сталинград» и «Битва за Москву» #13

    Вода в основном проникает в дерево через корни посредством осмоса, и любые растворенные минеральные питательные вещества будут перемещаться с ней вверх через ксилему внутренней коры (используя капиллярное действие) в листья. Эти бегущие питательные вещества затем питают дерево в процессе фотосинтеза листьев. Это процесс, который преобразует световую энергию, обычно от Солнца, в химическую энергию, которая впоследствии может высвобождаться для подпитки деятельности организмов, включая рост.

    Деревья снабжают листья водой из-за снижения гидростатического или водяного давления в верхних, листоносных частях, называемых кронами или навесами. Эта разница гидростатического давления «поднимает» воду к листьям. Девяносто процентов воды дерева в конечном итоге рассеивается и высвобождается из устьиц листьев.

    Эта стома является отверстием или порой, которая используется для газообмена. Они в основном встречаются на нижней поверхности листьев растений. Воздух также попадает на завод через эти отверстия. Углекислый газ из воздуха, поступающего в стому, используется при фотосинтезе. Часть произведенного кислорода используется для дыхания посредством испарения в атмосферу. Эта полезная потеря воды от растений называется транспирацией.

    Объемы использования водных деревьев

    Полностью выросшее дерево может потерять несколько сотен галлонов воды через листья в жаркий и сухой день.В мокрые, холодные, зимние дни одно и то же дерево почти не теряет воды, поэтому потеря воды напрямую связана с температурой и влажностью. Другой способ сказать, что почти вся вода, попадающая в корни дерева, теряется в атмосфере, но оставшиеся 10% сохраняют живую систему деревьев здоровой и поддерживают рост.

    Испарение воды из верхних частей деревьев, особенно листьев, а также стеблей, цветов и корней, может увеличить потери воды на деревьях. Некоторые виды деревьев более эффективны в управлении скоростью потери воды и, как правило, встречаются в естественных условиях на более сухих участках.

    Объемы использования водных деревьев

    Среднее созревающее дерево в оптимальных условиях может транспортировать до 10 000 галлонов воды только для того, чтобы захватить около 1000 полезных галлонов для производства продуктов питания и добавления к его биомассе. Это называется коэффициентом транспирации, отношением массы переносимой воды к массе производимого сухого вещества.

    В зависимости от эффективности растения или вида деревьев, для получения одного фунта сухого вещества может потребоваться всего лишь от 200 фунтов (24 галлона) воды до 1000 фунтов (120 галлонов). Один акр лесной земли в течение вегетационного периода может добавить 4 тонны биомассы, но для этого нужно 4000 тонн воды.

    Осмос и гидростатическое давление

    Корни используют преимущества «давления», когда вода и ее решения неравны. Ключ, который нужно помнить об осмосе, заключается в том, что вода вытекает из раствора с более низкой концентрацией растворенного вещества (почва) в раствор с более высокой концентрацией растворенного вещества (корень).

    Вода имеет тенденцию перемещаться в области отрицательных градиентов гидростатического давления. Поглощение воды осмосом корня растения создает более отрицательный потенциал гидростатического давления вблизи поверхности корня. Корни деревьев ощущают воду (меньший отрицательный водный потенциал), а рост направлен на воду (гидротропизм).

    Транспирация запускает шоу

    Транспирация — это испарение воды с деревьев в атмосферу Земли. Транспирация листьев происходит через поры, называемые устьицами, и при необходимой «стоимости» вытесняет значительную часть своей ценной воды в атмосферу. Эти устьицы разработаны, чтобы позволить газу углекислого газа обмениваться из воздуха, чтобы помочь в фотосинтезе, который затем создает топливо для роста.

    Нам нужно помнить, что транспирация охлаждает деревья и каждый организм вокруг них. Транспирация также помогает вызвать тот огромный поток минеральных питательных веществ и воды от корней к побегам, который вызван снижением гидростатического (водяного) давления. Эта потеря давления вызвана испарением воды из устьиц в атмосферу, и биение продолжается.

    Как слон использует свой хобот?

    Как слон использует свой хобот? Вот краткий обзор того, как стволы пахидермы используются для еды, питья и принятия пыльных ванн.

    Дерево Таксономия — Как дерево получает свое научное название

    Виды деревьев получают свое научное название (таксономия деревьев), используя систему классификации Линнея, называемую биномиальной номенклатурой. Узнайте больше здесь.

    Использует для отбеливателя и уксуса

    Смешивание отбеливателя и уксуса дает эффективный, но опасный очиститель. Здесь читатели делятся своим использованием для смешивания отбеливателя и уксуса и опыта.

    Источник

  • Оцените статью