- Как в реальности протекает электрический ток
- Направление движения электрического тока в металлах
- Движение заряженных частиц в газах и жидкостях
- Заключение
- С какой скоростью перемещается электрический ток по проводам
- Аналогия с водопроводом
- А как у переменного тока
- Заключение и выводы
- А вы знаете с какой скоростью течет электрический ТОК по проводам? Проверьте себя
- Что такое скорость электрического тока
- Скорость электрического тока
- Ещё раз о том, что собою представляет электрический ток.
Как в реальности протекает электрический ток
Общепринятое направление протекание тока принято считать от плюсовой клеммы источника питания к минусовой клемме источника питания. Но как в действительности обстоят дела в металлических проводниках, газах и жидкостях давайте разберемся.
Примечание. В данном материале рассмотрена общепринятая теория, согласно которой электроны действительно свободно перемещаются в кристаллической решетке проводника.
Направление движения электрического тока в металлах
Давайте начнем наш разбор с металлов. Вы все прекрасно знаете, что у любого металла присутствует кристаллическая решетка, которую очень приблизительно можно изобразить так:
При этом так же известно, что протоны и нейтроны имеют статическое положение и не могут перемещаться, а электроны, вращающиеся на орбитах, вполне могут перемещаться по всему объему проводника.
Пока у нас не приложено внешнее воздействие (нет разности потенциалов) электроны движутся в хаотичном порядке. Как только мы подключаем данный проводник к источнику (например, к аккумуляторной батарее), электроны под оказываемым воздействием электромагнитного поля начинают двигаться в заданном направлении.
А так как они (электроны) имеют отрицательный заряд, то они начинают притягиваться к положительной обкладке источника питания. То есть ток движется следующим образом:
Но по сей день принято считать, что движение тока происходит так:
Ампером было предложено принять за направление тока направление движения положительного электричества и говорить о направлении тока подразумевая движение положительного заряда. С тех пор так и повелось.
Движение заряженных частиц в газах и жидкостях
Несколько другая картина наблюдается в жидкостях и газах, ведь в них отсутствует жесткая кристаллическая решетка, а значит, в этом случае носителями зарядов могут выступать как ионы, так и электроны.
А так как ионы обладают положительным зарядом, то движение заряженных частиц в жидкостях и газах будет иметь следующий вид:
Получается, что при приложении разности потенциалов направление протекания электрического тока в жидкостях (или газах) может в точности соответствовать общепринятому направлению, если, конечно, в проводящей среде преобладают положительно заряженные ионы.
При определении силы тока следует учитывать следующую особенность жидкостей и газов: так в металлическом проводнике, если I = 1A, это означает, что через проводник за одну секунду прошел заряд равный 1 Кл ( 6,28^18 электронов). А вот в жидкости или газе ток в 1 Ампер может быть образован из 0,5 Кл ( 3,14^18 электронов) и 0,5 Кл положительно заряженных ионов.
Заключение
На самом деле для большинства современных схем нет принципиальной разницы по какому пути будет течь электрический ток: от плюса к минусу или же наоборот. На работу это никоим образом не повлияет.
Если статья оказалась вам полезна, тогда оцените ее лайком и спасибо за ваше внимание!
Источник
С какой скоростью перемещается электрический ток по проводам
Вы, наверное, сразу же скажете, что скорость электрического тока равна скорости света и будете неправы. В этом материале я на простом примере объясню, каким образом и с какой скоростью перемещается электрический ток по проводам.
Давайте для примера смоделируем следующую ситуацию:
Пусть у нас будет лампочка соединенная с постоянным источником питания двужильным экранированным кабелем, причем длина этого кабеля будет 10 километров.
Теперь если мы включим выключатель в этой цепи, то лампочка загорится через 10 км/300 000 км/с, где 10 км — это длина нашего проводника, а 300 000 км/с — это скорость распространения электромагнитной волны (света) в вакууме.
То есть, произведя расчет, получается, лампочка загорится через 0,00003333 сек или 33,333 мксек (в расчет не принята емкость проводника). Из этого следует вывод, что «движение электронов» распространится по проводнику со скоростью света.
Но то обстоятельство, что электроны начинают перемещаться друг за другом со скоростью света совсем не говорит о том, что они перемещаются в проводнике с этой же скоростью.
Здесь скорость света эта та скорость, с которой заряженные частицы начинают двигаться друг за другом, а перемещаться по проводнику они могут со скоростью всего лишь несколько миллиметров в единицу времени.
Непонятно? Сейчас объясню почему так.
Итак, мы замкнули цепь, нажав выключатель. В этот момент электроны начинают покидать минусовую клемму нашего с вами конденсатора, при этом происходит уменьшение электрического поля в диэлектрике конденсатора и электроны (с подключенного проводника) начинают заходить на плюсовую клемму конденсатора.
Таким образом, разность потенциалов между обкладками конденсатора уменьшается. А по причине того, что электроны в присоединённом участке проводника пришли в движение, то их пустующее место занимают электроны из соседнего участка провода (под действием электромагнитного поля замкнутой цепи).
Этот процесс перемещения распространяется все дальше по проводнику и по истечению определенного времени достигает нашей с вами лампочки и протекающий ток заставляет ее светиться.
Получается, что изменение электрического поля по проводнику распространяется мгновенно, а вот сами заряженные частицы имеют гораздо более низкую скорость.
Аналогия с водопроводом
Давайте для простоты понимания проведем аналогию с водопроводом.
Представьте такую картину: вы запустили водяной насос, также находящийся далеко за городом и буквально через доли секунды (изменение давления распространяется со средней скоростью 1400 км/с) у вас из трубы начала поступать вода. Но эта не та же самая вода, которая только что прошла через насос, «толкотня» молекул воды распространилась с огромной скоростью, а сами молекулы движутся с гораздо меньшей скоростью.
Так и с движением электрического тока.
А как у переменного тока
Ну вроде бы с постоянным током все более-менее стало ясно и может так же возникнуть второй логичный вопрос: А как дела обстоят с переменным током?
На самом деле разница здесь заключена лишь в том, что переменный ток меняет направление своего движения с частотой 50 Герц в единицу времени. Но при этом его скорость зависит все от тех же факторов, что и в случае с постоянным током.
Заключение и выводы
Так, давайте вновь вернемся к току. Получается, если на проводник не воздействует электромагнитное поле, то движение электронов внутри провода происходит абсолютно в хаотичном порядке.
Как только к проводнику оказывается воздействие электрического поля, то в зависимости от таких факторов как температура проводника, материала, разности потенциалов, скорость электрического тока может варьироваться от 0,6 до 6 миллиметров в одну единицу времени. Как видите, эта величина очень далека от скорости света. И вычисляется она по следующей формуле:
Где n – концентрация свободных носителей, S – площадь сечения проводника, e – заряд частицы, I – сила тока.
Это все, что я хотел вам рассказать о скорости перемещения электрического тока по проводам. Если статья оказалась вам полезна, то оцените ее лайком. Спасибо за ваше внимание!
Источник
А вы знаете с какой скоростью течет электрический ТОК по проводам? Проверьте себя
Как всегда вдохновением для данной публикации стали комментарии читателей.
Чтобы не возникло недопонимания, что комментатор имеет в виду он добавляет:
То есть по его мнению ток всегда двигается очень быстро (правда не уточняет на сколько), а корреспондент был не прав. Обратите внимание на лайки. С ним согласны, как минимум, еще 29 человек.
Надеюсь, вы уже ответили на этот вопрос и теперь начинаем выяснять с какой скоростью двигается ток.
Что такое скорость электрического тока
Можно взять определение из школьного учебника, но под рукой нет. Возьмем из Википедии:
Электрический ток — направленное (упорядоченное) движение частиц — носителей электрического заряда.
При этом, это не скорость отдельных электронов, а именно усредненная скорость их движения.
Здесь прямая аналогия с воздухом. Скорость отдельных молекул достигает 500 м/с, но при этом обычная скорость ветра 1-10 м/сек.
Ветер — это направленное (упорядоченное) вижение молекул воздуха.
Скорость электрического тока
В реальности, это очень простой вопрос из школьной программы. Вот задача из школьного задачника по физике под редакцией Рымкевича:
Задача расположена в начале раздела, а значит очень простая. Не будут расписывать решение, а сразу перейду к ответам.
Скорость тока всего 0,25мм/с = 900мм/час = 0,9 метра в час.
Скорость тока зависит от силы тока и сечения проводника, его типичные значения лежат в интервале от 0 до нескольких метров в час .
А вот скорость передачи напряжения действительно очень большая и равна скорости света.
То есть корреспондент был совершенно прав — ток медленно потек по проводам! 😂
Надеюсь, вы ответили правильно и вас не было среди тех 29 человек, которые поставили лайк на комментарий с неправильным пониманием скорости тока))
А если даже и были, то все равно — теперь вы знаете правильный ответ!))
Подписывайтесь на мой канал, впереди много интересного
Ставьте 👍🏻 чтобы мои статьи были у вас в ленте
Спасибо что со мной!
❤️Все мои статьи на тему экономики и энергетики находятся по тегу # экономика_и_энергетика_Беседка
Подписывайтесь на хэштег , если вам интересны публикации на данную тематику.
Источник
Ещё раз о том, что собою представляет электрический ток.
Многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы. Например, вплоть до середины 19 века в науке доминировало представление о двух видах «электрического флюида», создающего в телах электрические заряды противоположного знака — положительные и отрицательные.
Именно через «конфликт» между двумя разными «электрическими флюидами», который, как предполагалось, возникает при их встречном движении по проводнику, при замыкании положительного и отрицательного выводов «Вольтова столба», датский учёный Ганс Эрстед описал в 1820 году своё эпохальное открытие влияния электрического тока на магнитную стрелку.
Это влияние электрического тока на магнитную стрелку, как подметил Эрстед, обусловлено образованием вихревого движения особой материи вокруг провода, по которому протекает электрический ток.
Впоследствии английский физик Майкл Фарадей, заменивший в этом опыте Эрстеда магнитную стрелку на железные опилки, назвал наблюдаемое с их помощью явление «магнитным полем», имеющим вихревой характер.
Когда были открыты электроны, субатомные частицы, обычно движущиеся по своим орбиталям вокруг ядер атомов вещества, но способные также легко уходить в «свободные полёт», учёным стало ясно, что электрический ток в проводниках создают именно «свободные электроны», когда они упорядоченно движутся под действием внешней силы.
Соответственно, с открытием в 1897 году английским физиком Джозефом Томсоном свободных электронов стало окончательно ясно, что такие явления электростатики как заряжание тел положительным электричеством или заряжание тел отрицательным электричеством, происходят в тех случаях, когда с поверхности электрически нейтральных тел каким-либо путём снимаются свободные электроны или наоборот они переносятся на их поверхность.
Примеры образования разноимённых электростатических зарядов в телах с помощью трения.
При внешнем фотоэффекте, открытом в 1887 году немецким физиком Генрихом Герцем и детально изученном русским физиком Александром Столетовым в 1888-1889 годах, происходит выбивание свободных электронов с поверхности этих тел падающим на эти тела светом высоких энергий (ультрафиолетом, рентгеновскими лучами, гамма-излучением). Тела, теряющие таким образом свободные электроны, одновременно с этим теряют свой электрический заряд, становясь электрически нейтральными или даже положительно заряженными.
Все эти эффекты говорят нам о том, что сами по себе свободные электроны не могут покидать тела, даже если они являются электрически заряженными.
Чтобы свободный электрон ушёл за пределы поверхности того или иного тела, он должен получить определённой величины энергетический импульс, сообщающий ему дополнительную энергию, достаточную для отрыва от поверхности тела. Такую энергию выхода за пределы вещества свободные электроны получают не только при фотоэффекте и электризации тел механическим путём, но также и при сильном нагревании тел.
Однако, если нет ни того, ни другого, ни третьего, свободные электроны не покидают тел. В этой связи возникает закономерный вопрос: как ведут себя свободные электроны в тех или иных телах, когда никакие внешние силы на них не действуют?
Простейшие опыты по электростатике показывают, что заряженные тела одного знака, отталкиваются друг от друга, а разноимённые — притягиваются.
На этих рисунках представлены электрические заряды и силовых линии электрических полей.
Свободные электроны — это заряды одного знака. Соответственно, они всегда стремятся держаться подальше от других свободных электронов, находящихся внутри тех же тел.
А если таких свободных электронов в теле миллиарды штук, и за пределы этих тел, (даже находясь на их поверхности!) они выйти не могут, как газ не может выйти из закупоренной ёмкости, что тогда?
Кстати, среднее значение концентрации электронов в каждом кубическом сантиметре металла составляет примерно 10 в 23 степени.
Надо думать, что столь огромное количество свободных электронов подобно молекулам воздуха создаёт в проводниках своего рода «электронный газ», который может находиться как в состоянии давления, так и в состоянии разрежения, а также в состоянии равновесия с положительным зарядом атомных ядер вещества. В последнем случае тело является электрически нейтральным.
Средневековые учёные интуитивно так и понимали природу электричества, связывая его с представлением об «электрическом флюиде». Вот только они не могли догадаться, что тело приобретает положительный заряд при снижении внутреннего давления в «электронном газе», за счёт снятия с поверхности тела части свободных электронов, а отрицательный заряд тело приобретает, когда происходит повышение давления «электронного газа», за счёт переноса на поверхность тела дополнительных свободных электронов. Таким образом оба знака заряда (плюс и минус) создаёт в телах «электронный газ», находящийся в состоянии повышенного или пониженного давления.
Соответственно, чтобы нейтрализовать электрический заряд, находящийся на поверхности тела, необходимо сделать так, чтобы электроны могли перейти оттуда, где есть их переизбыток, туда, где имеется их дефицит.
То обстоятельство, что электростатические заряды, находящиеся на поверхности заряженных тел (электростатика), а также электрический ток, протекающий по проводникам (электродинамика), создают эффекты, выходящие далеко за пределы этих тел, дало учёным повод предположить существование материальных полей взаимодействия — электрического и магнитного.
На этом рисунке электрическое поле представлено сиреневым цветом, а вихревое магнитное поле — синим. Провод, по которому проходит электрический ток, и с которым связаны эти явления, здесь не показан, но его наличие надо обязательно иметь ввиду, так как без участия и упорядоченного движения свободных электронов существование электрического и магнитного полей невозможно, кто бы и что бы ни говорил. (Подробно я поясню это позже).
Со временем учёным стало понятно, что силовое электрическое поле, через которое со скоростью света передаётся силовое взаимодействие между электронами, представляет собой особый, отличный от вещества вид материи, способный заполнять собой в веществе всё межатомное и внутриатомное пространство. Поэтому объяснение сущности электрического, магнитного и суммарного электромагнитного поля в учебниках физики не обходится без упоминания «особой формы материи».
Пример: «Электрическое ( электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.).
Скорость передачи силового взаимодействия между электронами и другими субатомными частицами, ограниченная скоростью
300 тысяч км/сек, по всей видимости, определяется исключительно электромеханической упругостью и плотностью этого межатомного и внутриатомного материального «наполнителя».
Причём самим электронам свойственно двигаться внутри электропроводящих тел под воздействием внешней силы со скоростью всего несколько миллиметров в секунду.
Как согласуется между собой крайне медленная скорость упорядоченного движения электронов в проводе с очень быстрой скоростью распространения по проводу силового электрического поля?
Зная о том, что свободные электроны образуют в металлах «электронный газ», и о том, что пространство между электронами плотно заполнено «особой материей, отличной от вещества», из которой формируются электрическое и магнитное поля, мы можем движение электрического тока по проводам уподобить потоку жидкости в гидравлической системе.
В обоих системах (электрической и гидравлической) с наивысшей скоростью передаётся по замкнутой цепи давление воды и напряжение электрического поля. Для воды эта скорость равна
1500 м/сек, для электрического поля она равна
300 тыс. км/сек. Если отследить в воде, которая под давлением движется по трубе, скорость отдельных капель или молекул, то окажется, что её величина составляет лишь единицы метров в секунду. Аналогично обстоит дело и с движущимися в потоке свободными электронами, который мы называем электрическим током. Электроны движутся в потоке ещё медленнее, чем молекулы воды, зато электрическое напряжение (аналог давления в воде) распространяется по проводам с гигантской скоростью.
Теперь, когда мы имеем некоторое представление о процессах, протекающих в электрических проводах, мы можем более детально представить, что такое электрический ток.
Когда в обмотке электрического генератора, вырабатывающего электроэнергию, свободные электроны сдвигаются с места под воздействием магнитного поля изменяющейся силы и перемещаются в ту или иную сторону вдоль провода, пусть даже и на микроскопическое расстояние.
. они толкают и деформируют своими электрическими полями электрические поля соседних электронов, те также сдвигаются со своего места на микроскопическую величину в направлении действия силы и в свою очередь своими электрическими полями толкают и деформируют электрические поля других соседних электронов. Так происходит движение вширь и вдоль провода объёмной упругой волны электрического поля, которая за счёт свойств «особой материи», отличной от вещества, распространяется со скоростью света.
Напомню читателю на всякий случай: «Электрическое (электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.).
Учитывая то, что свободные электроны своей совокупностью образуют в телах «электронный газ», не покидающий пределы наружной поверхности проводника, то упругая объёмная волна напряжения (давления) электрического поля, передающая силовое взаимодейстсвие между электронами, распространяется по проводнику (внутри «электронного газа») как по трубчатому волноводу, и за его пределы она не выходит.
Движение по проводу этой упругой волны электрического напряжения (электродвижущей силы, ЭДС) лучше всего объясняет рисунок американского инженера Николы Тесла, с помощью которого он также объяснил, как можно передавать электрическую энергию на любые расстояния всего по одному проводнику, нагруженному на свободном конце электростатической ёмкостью.
Обратите внимание на то, как работает на конце проводника электростатическая ёмкость в виде токопроводящей сферы, на наружной поверхности которой плотность электрических зарядов может то увеличиваться, то уменьшаться. Её аналогом в гидравлической системе является эластичная (резиновая) ёмкость, наружный размер которой может то увеличиваться, то уменьшаться.
За счёт нагнетания на поверхность уединённой электростатической ёмкости электрических зарядов или за счёт снятия с её поверхности электрических зарядов и возможно организовать передачу электроэнергии по одиночному проводнику.
Этот же принцип и этот же эффект «эластичной ёмкости», возникающий при движении электрических зарядов по поверхности проводников под действием Кулоновских сил, используется в радиотехнике для возбуждения в пространстве, окружающем проводник, радиоизлучений.
Ниже патент, выданный инженеру Н.Тесла в США 20 марта 1900 года, на систему для передачи электрической энергии без проводов, причём это дополнение к его раннему патенту от 1897 года:
Слева передающая установка, справа приёмная установка, использующие электростатические ёмкости на свободных концах проводников, излучающих электрическую энергию в пространство и принимающих её из пространства. Правда, сам Тесла, придумал эти установки для передачи электрической энергии не через пространство, а через землю. В этом случае, говорил он, можно передавать энергию на любые расстояния с весьма малыми потерями.
Что касается так называемого «магнитного поля», которое всегда является вихревым по характеру, то учёным было изначально ясно, что оно образуется только при движении электрического тока.
В любой современной энциклопедии можно прочесть следующее утверждение: «Магнитное поле — это поле, действующее как на движущиеся электрические заряды, так и на тела, обладающие магнитным моментом, независимо от состояния их движения. Магнитное поле можно назвать особым видом материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Вместе, магнитное и электрическое поля образуют электромагнитное поле». Источник: https://ru.wikipedia.org/wiki/Магнитное_поле
Как видим, и в случае с магнитным полем мы тоже имеем дело с материей, отличной от вещества. Только, если в случае с электрическим полем мы имеем в телах «электронный газ», находящийся под давлением (когда тела заряжены отрицательно) или в состоянии разрежения (когда тела заряжены положительно), то в случае с магнитным полем мы имеем вихревое движение этой же тончайшей материи, отличной от вещества, причём это вихревое движение тончайшей материи может охватывать области, простирающиеся на некоторое расстояние за пределы проводника.
То обстоятельство, что неподвижные электростатические заряды не создают магнитные поля, их создают только движущиеся упорядоченно электрические заряды, указывает нам направление поиска первопричины возникновения магнитных полей вокруг проводов с током.
В любой энциклопедии можно прочесть следующую информацию: «Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)».
Поскольку всё большое состоит из малого, нам нетрудно понять, что большие магнитные поля образуются из слияния малых вихревых магнитных полей, постоянно присутствующих вокруг электронов по причине того, что они обладают собственными магнитными моментами.
Картина суммарного магнитного поля, возникающего вокруг многовитковой проволочной катушки при протекании по ней тока:
Справка из энциклопедического словаря: «Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других частиц), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина. Спин (от англ. spin, буквально — вращение, вращать(-ся)) — собственный момент импульса элементарных частиц)».
Таким образом мы приходим к пониманию, что магнитное поле как микрообъект существует вокруг электронов всегда, по причине того, что они обладают вращением, спином.
Как макрообъект магнитное поле возникает вокруг тел только тогда, когда большое количество электронов под действием внешней силы (ЭДС) приходит в упорядоченное поступательное движение, при этом их оси вращения (магнитные полюса электронов) занимают в пространстве одинаковое положение. В этом случае и происходит слияние миниатюрных вихрей каждого отдельно взятого электрона в один большой вихрь, окружающий тело, по котором течёт электрический ток.
Если всё это понятно, и ничто не вызывает возражений, то можно перейти к подведению некоторых итогов.
Первый и главный вывод: ни электрическое поле, ни вихревое магнитное поле не может существовать в отрыве от электрических зарядов.
ЭПИЛОГ
Как я написал в самом начале этой статьи, многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы.
Когда английский учёный Майкл Фарадей открыл явление электромагнитной индукции, это случилось 29 августа 1831 года, он просто увидел, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Причём величина ЭДС не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле.
Спустя почти 30 лет, в 1860-х годах, шотландский учёный Джеймс Максвелл, который разумеется не знал и даже не догадывался о существовании электронов, они были открыты только в 1897 году, высказал смелую гипотезу об электромагнитной природе света. Впоследствии подтвердилось, что свет и все другие излучения (инфракрасное, ультрафиолетовое, рентгеновское) действительно порождаются движением электронов, вот только не факт, что свет распространяющийся в физическом вакууме (в безвоздушном пространстве) имеет электромагнитную природу!
Возможно, что в случае со светом, радиоволнами и прочими излучениями, порождаемыми движением электронов в вакуумных приборах или на поверхности проводников, мы имеем дело с иными формами материи, нежели изученные нами электрические и магнитные поля.
Иллюстрация ниже показывает устройство и принцип работы рентгеновской трубки, в которой жёсткое рентгеновское излучение порождается за счёт резкого торможения свободных электронов, предварительно ускоренных в сильном электрическом поле. Причём сами свободные электроны, при резком торможении которых рождаются рентгеновские лучи, за пределы рентгеновской трубки не вылетают.
Почему я так обозначил проблему современной физики?
Смотрите как подаётся история, связанная с Д.К.Максвеллом и с его «Электромагнитной теорией света» полуторавековой давности:
«. Оказалось, что не только ток, но и изменяющееся со временем электрическое поле порождает магнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света. »
Максвеллу было простительно сделать в 1860-х годах предположение о том, что не только магнитное поле является вихревым, но и электрическое поле тоже может быть вихревым, и что оба они могут существовать в отрыве от электронов, он ведь ничего не знал об электронах и даже не подозревал об их существовании.
Но мы то уже знаем и про электроны, и про свойства создаваемых ими полей, и мы понимаем, что существование электрического и магнитного полей в отрыве электронов невозможно!
Давайте рассмотрим случай, представленный на рисунке ниже. Так в учебниках современной физики рассказывается об образовании внутри замкнутого металлического кольца вихревого электрического поля.
В показанном на этом рисунке случае, изменяемый рукой оператора магнитный поток, пронизывая замкнутое металлическое кольцо, непосредственно воздействует на свободные электроны, и строго по закону электромагнитной индукции, вызывает их сдвиг в направлении, указанном тонкой стрелкой синего цвета.
В замкнутом металлическом кольце под воздействием изменяющегося магнитного потока свободные электроны сдвигаются фактически все одновременно, следовательно имеющиеся расстояния между ними, обусловленные действием Кулоновских сил не меняются. А значит, электродвижущая сила (ЭДС) в этом случае не возникает! Еинд = О. То есть, вихревого электрического поля, которое должно характеризоваться величиной напряжённости, нет! А вот если бы металлическое кольцо не было замкнутым, то под воздействием изменяющегося магнитного поля мы бы имели скопление свободных электронов на одном его конце, недостаток свободных электронов на другом его конце, и в дополнение к этому мы бы имели некоторую напряжённость электрического поля между наведёнными зарядами.
К сожалению, несмотря на такие очевидные вещи, современная мировая наука отказывается признавать ошибочность теории Д.К.Максвелла, построенной на предположении, что электрические и магнитные поля могут существовать в отрыве от электрических зарядов. До сих пор заявляется, что оба эти поля могут существовать даже в вакууме, в котором отсутствуют малейшие признаки какого-либо вещества.
В школах и ВУЗах учителя до сих пор преподают учащимся, что для образования вихревого электрического поля «проводник вообще не нужен! Проводник является всего лишь индикатором того, что здесь есть электрическое поле! Если убрать проводник и оставить меняющееся магнитное поле, то электрическое поле всё-равно возникает в пространстве. Причём линии этого поля, силовые линии, направлены вот так, они замкнуты. Такое поле, линии которого замкнуты, называется вихревым.
Когда оно появляется? При изменении магнитного поля. Итак, пишем вывод: При изменении магнитного поля в пространстве, в нём возникает вихревое электрическое поле. Проводник при этом не нужен! Без всякого проводника. В пустоте, в вакууме возникает вихревое электрическое поле. » Источник: https://youtu.be/FAqvdIPttjo
Я же хочу сказать следующее:
То обстоятельство, что скорость распространения электрического поля в проводах равна скорости света в вакууме, позволяет высказать предположение, что и в проводах, и в вакууме (безвоздушном пространстве) имеет место распространение упругих волн в одной и той же тончайшей среде, которая отлична от вещества.
Причём, если электрическое поле распространяется в проводах со скоростью света как упругая продольная волна, то и в вакууме (безвоздушном пространстве) волна света тоже представляет собой упругую продольную волну, движущуюся наступательно.
При этом в реальной волне света равно как и в радиоволне нет места как вихревому магнитному полю, так и вихревому электрическому полю!
Пытаться объяснять явление поляризации света (равно как и явление поляризации радиоволн) с помощью поперечных колебаний магнитного и электрического полей, якобы существующих в отрыве от свободных электронов, было большой ошибкой учёных 19 века.
Создание в ХХ веке квантовой физики дало подсказку, но ею никто из академиков не спешит воспользоваться, что явление поляризации света можно легко объяснить вращением частиц света («фотонов») вокруг своей оси.
Обычный свет после прохождения через поляризатор становится поляризованным, и это обстоятельство заставило учёных придумать поперечные электромагнитные волны.
Хотя, казалось бы, что может быть проще и яснее?! При пропускании неполяризованного света через поляризатор тормозятся все фотоны, оси которых не совпадают с главной осью поляризатора, но те фотоны, у которых оси совпадают с главной осью поляризатора, проходят сквозь него свободно. Так из неполяризованного света получается поляризованный свет. Это исчерпывающее объяснение. И не надо никому рассказывать волшебные сказки про «поперечные колебания вихревых полей, электрического и магнитного в абсолютной пустоте»!
Фотоны — это возбужденные частицы всё той же материи, отличной от вещества, в которой возникают хорошо известные нам электрические и магнитные поля.
Причём гипотетические «поперечные колебания вихревых полей», о которых рассказывает современная физика, нельзя ни нарисовать, ни представить в здравом воображении! А то, что подаётся в учебниках физики под видом радиоволны, является несуразицей, в которой отсутствует даже намёк на то, что поля, электрическое и магнитное, колеблющиеся поперёк направления распространения радиоволны в пространстве, являются вихревыми, как того требует «Электромагнитная теория света» Д.К.Максвелла:
Где здесь хоть намёк на то, что в радиоволне имеет место движение/колебание именно вихревого магнитного поля и именно вихревого электрического поля?!
Реальная картина радиоволны, имеющей продольную компоненту и состоящей из «фотонов», может быть, например, такой:
Если я достаточно ясно всё объяснил, мне остаётся лишь надеется, что процесс ревизии мировой физической науки и переписывания учебников физики первыми начнут российские учёные.
14 марта 2021 г. Мурманск. Антон Благин
Источник