Взаимодействие эфира с водой называется гидролизом

Сложные эфиры: способы получения и свойства

Сложные эфиры: способы получения, химические и физические свойства, строение.

Сложные эфиры – это органические вещества, в молекулах которых углеводородные радикалы соединены через карбоксильную группу -СОО-, а именно R1-COOH-R2.

Общая формула предельных сложных эфиров: СnH2nO2

Классификация сложных эфиров

По числу карбоксильных групп:

  • сложные эфиры одноосновных карбоновых кислот — содержат одну карбоксильную группу -СОО-. Общая формула CnH2nO2.
Например, метилформиат
  • сложные эфиры многоосновных карбоновых кислот — содержат две и более карбоксильные группы -СОО-. Например, общая формула сложных эфиров двухосновных карбоновых кислот CnH2n-2O4.
Например, тристеарат глицерина

Номенклатура сложных эфиров

В названии сложного эфира сначала указывают алкильную группу, связанную с кислородом, затем кислоту, заменяя суффикс в названии кислоты (-овая кислота) на суффикс -оат.

Название сложного эфира Тривиальное название Формула эфира
Метилметаноат Метилформиат HCOOCH3
Этилметаноат Этилформиат HCOOC2H5
Метилэтаноат Метилацетат CH3COOCH3
Этилэтаноат Этилацетат CH3COOC2H5
Пропилэтаноат Пропилацетат CH3COOCH2CH2CH3

Химические свойства сложных эфиров

Сложные эфиры устойчивы в нейтральной среде, но легко разлагаются при нагревании в присутствии кислот или в присутствии щелочей.

В присутствии кислот гидролиз сложных эфиров протекает как реакция, обратная этерификации. при гидролизе сложных эфиров образуются спирты и карбоновые кислоты.

R-COO-R’ + H2O = R-COOH + R’-OH

Например , при гидролизе метилацетата образуются уксусная кислота и метанол.

Читайте также:  Посудомойка ханса не набирает воду что делать

При щелочном гидролизе сложных эфиров образуются соли карбоновых кислот и спирты.

Например , при щелочном гидролизе этилформиата образуются этанол и формиат натрия:

При щелочном гидролизе этилацетата образуются ацетат и этанол:

Щелочной гидролиз сложных эфиров — реакция, имеющая промышленное значение. Гидролиз жиров в присутствии оснований — древнейший способ получения мыла. Первые способы получения мыла связаны со смешиванием жира с золой. Один из основных компонентов животного жира — тристеарат глицерина. В щелочной среде тристеарат глицерина разлагается на глицерин и соль стеариновой кислоты:

2. Переэтерификация

Переэтерификация — это реакция превращения одного сложного эфира в другой под действием соответствующих спиртов в присутствии катализатора (кислоты или основания)

R-COO-CH3 + R’-OH = R-COOR’ + CH3-OH

3.Восстановление сложных эфиров

Сложные эфиры восстанавливаются с разрывом связи С-О карбоксильной группы. При этом образуется смесь спиртов.

Например, этилбензоат восстанавливается литийалюминийгидридом до бензилового спирта и этанола

Получение сложных эфиров

1. Этерификация карбоновых кислот спиртами

Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием сложных эфиров.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

2. Соли карбоновых кислот с галогеналканами

При взаимодействии солей карбоновых кислот с галогеналканами образуются сложные эфиры.

Например, при взаимодействии ацетата натрия с хлорметаном образуется метилацетат.

CH3-COONa + CH3-Cl = CH3-COOH + NaCl

Источник

Характерные химические свойства альдегидов, карбоновых кислот, сложных эфиров.

Содержание:

Органические вещества обладают разными составными группами. У каждого соединения есть химическая формула, она определяет характерные химические свойства для альдегидов, карбоновых кислот, сложных эфиров. Знания о химических формулах, реакциях взаимодействия применяются в промышленности, фармакологии, научных лабораториях.

Химические свойства альдегидов

Альдегиды – химические соединения, содержащие карбонильную группу. То есть для альдегидов характерна следующая формула:

  • R – радикал углеводорода, имеющий степень насыщения;
  • CHO – альдегидная группа.

Альдегиды подразделяются по числу карбонильных групп, их максимальное количество – не более 3. В зависимости от насыщенности углеводорода выделяют предельные, непредельные ароматические альдегиды.

Гидрирование

Для гидрирования добавляют водород. Чтобы действие прошло быстрее и качественнее, применяют катализатор. Реакция происходит под влиянием высокой температуры. Альдегид превращается во вторичный спирт. Этому соответствует формула:

Окисление

Альдегиды окисляются под действием химических веществ. Для этого применимы мягкие соединения. Реакция происходит под действием высокой температуры. Во время реакции исчезает голубое окрашивание, появляется коричнево-красный оттенок. Выпадает мутный осадок. Формула:

Если использовать вместо гидроксида меди аммиачный раствор оксида серебра, образуется аммониевая соль. Формула реагирования аммиака с кислотами:

Помимо мягких окислителей, на альдегид действуют сильные вещества, например, дихромат калия. При взаимодействии веществ образуются карбоновые кислоты:

Химические свойства карбоновых кислот

Карбоновые кислоты – органические вещества, содержащие карбоксильную группу . Они включают 1 или 2 карбоксильные группы, которые содержат карбонильную и гидроксильную группу. Так как эти вещества взаимодействуют между собой, связь OH обладает большей популярностью, чем фенолы и спирты. Поэтому карбоновые кислоты имеют сильные кислотные свойства. Но если используется водный раствор, образуются свойства слабых кислот.

Реакции образования солей

  • Взаимодействие карбоновой кислоты и аммиака:

  • Реакция взаимодействия с оксидами:

  • Реакция с гидроксидами металлов:

    Взаимодействие с солями слабых и высших кислот:

Реакции с участием гидроксильной группы

Если происходит взаимодействие карбоновых кислот и спиртов, образуется реакция этерификации. Образуются сложные эфиры по формуле:

Так как реакция обратима, ее осуществляют при помощи нагревания. Равновесие смещается с образованием сложного эфира. Если реакция обратилась, она называется гидролизом сложного эфира:

Если требуется необратимая реакция, добавляют щелочи, в осадок выпадает соль:

Реакция замещения атомов водорода в углеводородном заместителе

Чтобы в карбоновых кислотах заместить атом водорода на галоген, требуется добавить хлор, бром, красный фосфор. Реакцию проводят при повышении температуры:

Реакция декарбоксилирования

Если взять карбоновую кислоту с добавлением кальция, воздействовать на нее температурой, образуется углекислый кальций. Схожая реакция образуется под воздействием гидроксида натрия.

Характеристика муравьиной кислоты

В отличие от других кетоновых кислот, муравьиная кислота содержит две группы:

Из-за этого вещество проявляет свойства кислот и альдегидов. Выделяют следующие формулы:

При взаимодействии муравьиной и серной кислоты остается вода, выделяется углекислый газ:

Химические свойства сложных эфиров

Сложные эфиры – производные кислот с общей формулой:

Сложные эфиры делятся на 2 класса:

  • сложные эфиры карбоновых кислот (R1-COO-R2);
  • ортоэфиры карбоновых кислот (R1-C(OR*)2-R**).

В отдельную группу выделяют лактоны. Это циклические сложные эфиры.

Гидролиз

Омыление для сложных эфиров проходит легко. Образуется спирт и обратимая водная кислота или необратимая щелочь:

Если сохраняются условия кислотного катализа, реакция обратима. Происходит расщепление сложного эфира при воздействии воды и температуры. Образуется карбоновая кислота, спирт. Это гидролиз сложного эфира:

Если эфир взаимодействует с щелочью, реакция необратима. Карбоксилат анион не вступает в реакцию со спиртом:

Реакция гидрирования или восстановления

Если взаимодействуют сложные эфиры и водород, образуется два спирта:

Реакция образования амидов

При взаимодействии сложного эфира и аммиака появляется амид кислоты, спирт:

Реакция горения

При горении сложного эфира образуется оксид углерода и вода:

Реакция присоединения

Если в эфире присутствует кислота или спирт, возможна реакция присоединения. То есть сложный эфир присоединяет водород.

Источник

Оцените статью