Взаимодействие хлора с водой овр

Физические свойства

Cl2 при об. Т — газ желто-зеленого цвета с резким удушающим запахом, тяжелее воздуха — в 2,5 раза, малорастворим в воде (

6,5 г/л); х. р. в неполярных органических растворителях. В свободном виде встречается только в вулканических газах.

Способы получения

Основаны на процессе окисления анионов Cl —

2Cl — — 2e — = Cl2 0

Промышленный

Электролиз водных растворов хлоридов, чаще — NaCl:

Лабораторные

Окисление конц. HCI различными окислителями:

Химические свойства

Хлор — очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, превращаясь при этом в очень устойчивые анионы Cl — :

Реакции с металлами

Активные металлы в атмосфере сухого газообразного хлора воспламеняются и сгорают; при этом образуются хлориды металлов.

Малоактивные металлы легче окисляются влажным хлором или его водными растворами:

Реакции с неметаллами

Хлор непосредственно не взаимодействует только с O2, N2, С. С остальными неметаллами реакции протекают при различных условиях.

Образуются галогениды неметаллов. Наиболее важной является реакция взаимодействия с водородом.

Вытеснение свободных неметаллов (Вr2, I2, N2, S) из их соединений

Диспропорционирование хлора в воде и водных растворах щелочей

В результате самоокисления-самовосстановления одни атомы хлора превращаются в анионы Cl — , а другие в положительной степени окисления входят в состав анионов ClO — или ClO3 — .

Cl2 + Н2O = HCl + НClO хлорноватистая к-та

Эти реакции имеют важное значение, поскольку приводят к получению кислородных соединений хлора:

КClO3 и Са(ClO)2 — гипохлориты; КClO3 — хлорат калия (бертолетова соль).

Взаимодействие хлора с органическими веществами

а) замещение атомов водорода в молекулах ОВ

б) присоединение молекул Cl2 по месту разрыва кратных углерод-углеродных связей

Хлороводород и соляная кислота

Газообразный хлороводород

Физические и химические свойства

HCl — хлорид водорода. При об. Т — бесцв. газ с резким запахом, достаточно легко сжижается (т. пл. -114°С, т. кип. -85°С). Безводный НСl и в газообразном, и в жидком состояниях неэлектропроводен, химически инертен по отношению к металлам, оксидам и гидроксидам металлов, а также ко многим другим веществам. Это означает, что в отсутствие воды хлороводород не проявляет кислотных свойств. Только при очень высокой Т газообразный HCl реагирует с металлами, причем даже такими малоактивными, как Сu и Аg.
Восстановительные свойства хпорид-аниона в HCl также проявляются в незначительной степени: он окисляется фтором при об. Т, а также при высокой Т (600°С) в присутствии катализаторов обратимо реагирует с кислородом:

Газообразный HCl широко используется в органическом синтезе (реакции гидрохлорирования).

Способы получения

1. Синтез из простых веществ:

2. Образуется как побочный продукт при хлорировании УВ:

R-H + Cl2 = R-Cl + HCl

3. В лаборатории получают действием конц. H2SO4 на хлориды:

H24(конц.) + NaCl = 2HCl↑ + NaHSО4 (при слабом нагревании)

H24(конц.) + 2NaCl = 2HCl↑ + Na24 (при очень сильном нагревании)

Водный раствор HCl — сильная кислота (хлороводородная, или соляная)

HCl очень хорошо растворяется в воде: при об. Т в 1 л Н2O растворяется

450 л газа (растворение сопровождается выделением значительного количества тепла). Насыщенный раствор имеет массовую долю HCl, равную 36-37 %. Такой раствор имеет очень резкий, удушающий запах.

Молекулы HCl в воде практически полностью распадаются на ионы, т. е. водный раствор HCl является сильной кислотой.

Химические свойства соляной кислоты

1. Растворенный в воде HCl проявляет все общие свойства кислот, обусловленные присутствием ионов Н +

а) с металлами (до Н):

б) с основными и амфотерными оксидами:

в) с основаниями и амфотерными гидроксидами:

г) с солями более слабых кислот:

Реакции с сильными окислителями F2, MnO2, KMnO4, KClO3, K2Cr2O7. Анион Cl — окисляется до свободного галогена:

2Cl — — 2e — = Cl2 0

Уравнения реакция см. «Получение хлора». Особое значение имеет ОВР между соляной и азотной кислотами:

Реакции с органическими соединениями

а) с аминами (как органическими основаниями)

б) с аминокислотами (как амфотерными соедимнеиями)

Оксиды и оксокислоты хлора

Кислородсодержащие соединения хлора — чрезвычайно неустойчивые вещества, так как включают атомы Cl в нестабильных положительных с. о. Тем не менее некоторые из них имеют важное практическое значение.

Источник

Галогены

Галогены (греч. hals — соль + genes — рождающий) — химические элементы VIIa группы: F, Cl, Br, I, At. Реагируют с большинством других элементов и органических соединений.

Галогены широко распространены в природе. Их химическая активность падает от фтора к астату.

Общая характеристика элементов VIIa группы

От F к At (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Все галогены относятся к неметаллам, являются сильными окислителями.

Электронные конфигурации у данных элементов схожи, так как они находятся в одной группе (главной подгруппе!), общая формула ns 2 np 5 :

  • F — 2s 2 2p 5
  • Cl — 3s 2 3p 5
  • Br — 4s 2 4p 5
  • I — 5s 2 5p 5
  • At — 6s 2 6p 5

Для галогенов характерны нечетные степени окисления: -1, +1, +3, +5, +7. Это связано с электронной конфигурацией атомов в возбужденном состоянии.

Природные соединения
  • NaCl — галит (каменная соль)
  • CaF2 — флюорит, плавиковый шпат
  • NaCl*KCl — сильвинит
  • 3Ca3(PO4)2*CaF2 — фторапатит
  • MgCl2*6H2O — бишофит
  • KCl*MgCl2*6H2O — карналлит

Простые вещества — F2, Cl2, Br2, I2

Галогены в чистом виде можно получить путем электролиза водных растворов и расплавов их солей. Например, хлор в промышленности получают электролизом водного раствора хлорида натрия.

Электролизом расплава гидрофторида калия KHF2 в безводной плавиковой кислоте — HF — был впервые получен фтор.

Более активные галогены способны вытеснять менее активные. Активность галогенов убывает: F → Cl → Br → I.

В лабораторных условиях галогены могут быть получены следующими реакциями.

    Реакции с металлами

Для галогенов характерна высокая реакционная способность. Фтор реагирует со всеми металлами без исключения, некоторые из них в атмосфере фтора самовоспламеняются.

Реакции с неметаллами

Хлор, как и фтор, химически весьма активен. Не реагирует только с кислородом, азотом и благородными газами.

F2 + H2 → HF (в темноте со взрывом)

Галогены вступают в реакцию друг с другом. Чтобы определить степени окисления в получающихся соединениях, вспомните электроотрицательность 😉

Br2 + F2 → BrF (фтор более электроотрицателен, чем бром — F — )

Br2 + I2 → IBr3 (бром более электроотрицателен, чем йод — Br — )

Реакции с водой

Реакция фтора с водой протекает очень энергично, носит взрывной характер.

Хлор реагирует с водой обратимо, образуя хлорную воду — смесь хлорноватистой и соляной кислоты. Бром вступает в те же реакции, что и хлор.

Замечу, что активность йода существенно ниже, чем у остальных галогенов. С неметаллами йод почти не реагирует, а с металлами — только при нагревании.

Реакции с щелочами

Cl2 + NaOH → NaCl + NaClO + H2O

Галогены способны вытеснять друг друга из солей. Более активные вытесняют менее активные.

KBr + I2 ⇸ (реакция не идет, так как йод менее активен, чем бром)

Галогеноводороды

Соединения, образованные из галогенов и водорода. К галогеноводородам относятся следующие вещества:

  • HF — фтороводород (газ), фтороводородная (плавиковая) кислота (жидкость)
  • HCl — хлороводород (газ), соляная кислота (жидкость)
  • HBr — бромоводород, бромоводородная кислота
  • HI — йодоводород, йодоводородная кислота
  • HAt — астатоводород, астатоводородная кислота

При н.у. HCl, HBr, HI — газы, хорошо растворимые в воде.

В промышленности применяют получение прямым методом: реакцией водорода с галогенами.

В лабораторных условиях галогеноводороды можно получить в реакциях обмена между галогенсодержащими солями и сильными кислотами.

HF — является слабой кислотой, HCl, HBr, HI — сильные кислоты. Металлы, стоящие в ряду напряжений до водорода, способны вытеснить водород из кислоты.

Галогеноводороды реагируют с основными, амфотерными оксидами и основаниями с образованием соответствующих солей.

KOH + HCl → KCl + H2O (реакция нейтрализации)

Реакции протекают в тех случаях, если в результате выпадает осадок, выделяется газ или образуется слабый электролит (вода).

В некоторых реакциях проявляют себя как сильные восстановители, особенно HI.

В целом взаимодействие галогеноводородов с оксидами неметаллов нехарактерно. В этой связи важно выделить реакцию SiO2 с плавиковой кислотой.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Cl2 + H2O = ? уравнение реакции

Составьте химическое уравнение по схеме Cl2 + H2O = ? Какие продукты образуются в результате реакции? Охарактеризуйте соединение хлор: укажите его основные физические и химические свойства, а также способы получения.

В результате взаимодействия хлора с водой (Cl2 + H2O = ?) происходит образование хлорноватистой кислоты и хлороводорода. Реакция носит обратимый характер. Молекулярное уравнение реакции имеет вид:

Запишем ионное уравнение, учитывая, что газы и вода на ионы не распадаются, т.е. не диссоциируют.

Данная реакция относится к окислительно-восстановительным, поскольку химический элемент хлор изменяет свою степень окисления – одновременно и повышает и понижает её (диспропорционирование). Схемы электронного баланса выглядят следующим образом:

Хлор представляет собой газ желто-зеленого цвета, термически устойчивый. При насыщении хлором охлажденной воды образуется твердый клатрат. Хорошо растворяется в воде, в большой степени подвергается дисмутации («хлорная вода»). Растворяется в тетрахлориде углерода, жидких и . Плохо растворяется в насыщенном растворе NaCl.
Хлор нe реагирует с кислородом. Реагирует со щелочами. Сильный окислитель; энергично реагирует с металлами и неметаллами. Образует соединения с другими галогенами.

Источник

Соединения хлора: решение задач методом электронного баланса

Подробно решение уравнений окислительно-восстановительных реакций (ОВР) методом электронного баланса разобраны на странице «Метод электронного баланса».

Ниже приведены примеры решения уравнений окислительно-восстановительных реакций соединений хлора:

Если в окислительно-восстановительной реакции принимают участие простые вещества, молекулы которых состоят из двух или более атомов элементов, то в электронном балансе кол-во отданных и полученных электронов определяют с учётом кол-ва атомов в молекуле: H2 0 -2e — → 2H +1 .

Уравнения окислительно-восстановительных реакций соединений хлора

1. Уравнение реакции соляной кислоты с кислородом (HCl+O2):

2. Уравнение реакции соляной кислоты с перманганатом калия (HCl+KMnO4):

Следует обратить внимание, что часть хлорид-ионов соляной кислоты окисляется до хлора, а другая часть переходит в состав молекул хлорида калия и хлорида магния без изменения своей степени окисления, поэтому, коэффициенты в первую очередь ставятся перед Cl2, KCl, MnCl2 и только потом, перед HCl.

3. Уравнение реакции соляной кислоты с хромом на воздухе (HCl+Cr):

4. Уравнение реакции соляной кислоты с манганатом калия (HCl+K2MnO4):

5. Уравнение реакции разбавленной соляной кислоты с кальцием (HCl+Ca):

6. Уравнение реакции разбавленной соляной кислоты с гидридом кальция с образованием хлорида кальция и водорода:

7. Уравнение реакции хлорида кальция с водородом с образованием гидрида кальция и соляной кислоты:

8. Уравнение реакции хлорида железа (II) с водородом с образованием железа и соляной кислоты:

9. Уравнение реакции хлорида железа с хлором в нейтральной среде с образованием метагидроксида железа и соляной кислоты:

10. Уравнение реакции окисления на воздухе хлорида железа (III):

11. Уравнение реакции хлорида железа (III) с водородом с образованием хлорида железа (II) и соляной кислоты:

12. Уравнение реакции хлорида меди с алюминием с образованием хлорида алюминия и меди:

13. Уравнение реакции хлорида аммония с нитратом калия с образованием оксида азота, хлорида калия и воды:

14. Уравнение реакции хлорида аммония с магнием с образованием хлорида магния, аммиака и водорода:

15. Уравнение реакции разложения гипохлорита натрия с образованием хлората и хлорида натрия:

16. Уравнение реакции разложения хлората калия с образованием хлорида калия и кислорода:

17. Уравнение реакции хлората калия с алюминием:

18. Уравнение реакции хлората калия с концентрированной соляной кислотой:

19. Уравнение реакции хлората калия с концентрированной серной кислотой:

20. Уравнение реакции хлората калия с серой:

21. Уравнение реакции хлората калия с красным фосфором:

22. Уравнение реакции хлората калия с гидридом кальция:

23. Уравнение реакции разложения хлорной кислоты:

24. Уравнение реакции разложения перхлората калия:

25. Уравнение реакции разложения хлорита натрия:

26. Уравнение реакции гипохлорита кальция с пероксидом водорода:

27. Уравнение реакции хлорноватистой кислоты с иодоводородом:

28. Уравнение реакции разложения оксида хлора (I):

29. Уравнение реакции разложения диоксида хлора при нагревании (сопровождается большим выделением тепла — взрывом):

30. Уравнение реакции диоксида хлора с гидроксидом калия:

31. Уравнение реакции диоксида хлора с озоном:

32. Уравнение реакции диоксида хлора с пероксидом водорода:

33. Уравнение реакции дихлоргексаоксида с гидроксидом калия:

34. Уравнение реакции разложения оксида хлора (VII):

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Код кнопки:
Политика конфиденциальности Об авторе

Источник

Читайте также:  Samsung вода не попадает
Оцените статью