Взаимодействие сурьмы с водой

№51 Сурьма


История открытия:

Сурьмяный блеск был известен еще в древности; его применяли для окраски в черный цвет бровей и ресниц. Римляне называли его — stibium. Впоследствии ему было дано название (вероятно, заимствованное с арабского) antimonium, которое в дальнейшем стали применять и к самому металлу, получаемому из руды.
Живший в XV столетии бенедиктинский монах Василий Валентин подробно описал в своей «Триумфальной колеснице антимония» приготовление металлической сурьмы, а также бывшие тогда уже в употреблении ее сплавы, например сплав со свинцом для отливки типографского шрифта, и значительное число препаратов сурьмы.
В иатрохимический период развития химии препараты сурьмы принадлежали к числу самых распространенных средств лечения, среди них и «вечные» пилюли из металлической сурьмы. В качестве рвотного средства применяли вино, выдержанное некоторое время в чашах из сурьмы. В настоящее время медицина использует сурьмяные препараты только в ограниченном количестве.
Однако недавно синтезированные органические соединения, содержащие сурьму, приобрели большое значение как специфические средства от некоторых тропических болезней.

Получение:

Важнейший природный минерал — антимонит, Sb2S3. Сурьму получают либо сплавлением сульфида с железом (метод вытеснения) Sb2S3 + 3Fe = 2Sb + 3FeS,
либо обжигом сульфида и восстановлением полученной четырехокиси сурьмы углем (метод обжига — восстановления) Sb2S3 + 5O2 = Sb2O4 + 3SO2
Sb2O4 + 4C = 2Sb + 4CO.

Физические свойства:

В свободном состоянии сурьма образует серебристо-белые кристаллы, обладающие металлическим блеском и имеющие плотность 6,68 г/см 3 . Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и значительно хуже проводит тепло и электрический ток, чем обычные металлы. Кроме кристаллической сурьмы, известны и другие ее аллотропические видоизменения.

Читайте также:  Стиральная машина не сливает воду как отремонтировать

Химические свойства:

На воздухе при комнатной температуре металлическая сурьма устойчива, выше температуры плавления — загорается. С хлором порошкообразная сурьма взаимодействует со вспышкой. С серой, фосфором, мышьяком и со могими металлами сурьма соединяется при сплавлении.
В соляной кислоте и в разбавленой серной кислоте сурьма не растворяется, в горячей концентрированной серной кислоте образует сульфат сурьмы. В азотной кислоте, в зависимости от ее концентрации, сурьма растворяется с образованием оксида сурьмы(III) или (V).
При нагревании с нитратами или хлоратами щелочных металлов порошкообразная сурьма со вспышкой образует соли сурьмяной кислоты.
В соединениях проявляет степени окисления -3, +3 и +5.

Важнейшие соединения:

Оксид сурьмы(III), или сурьмянистый ангидрид, Sb2O3 — типичный амфотерный оксид с некоторым преобладанием основных свойств. Нерастворим, образует минералы. В сильных кислотах, например серной и соляной, оксид сурьмы (III) растворяется с образоваием солей сурьмы (III), в щелочах с образованием солей сурьмянистой H3SbO3 или метасурьмянистой HSbO2 кислоты. Например:
Sb2O3 + 2NaOH = 2NaSbO2 + Н2О
Оксид сурьмы(V) или сурьмяный ангидрид, Sb2O5 обладает главным образом кислотными свойствами; желтые кристаллы, растворяется в воде, образуя сурьмяную кислоту, пигмент для керамики.
Оксид сурьмы(IV) Sb2O4 образуется при нагревании на воздухе до 800-900° оксида сурьмы(III) или (V). Белый, едва растворимый в воде порошок, при очень сильном нагревании отщепляет кислород с образованием оксида сурьмы(III). Согласно рентгеноструктурным исследованиям, соответствует двойному оксиду сурьмы(III) и (V) или ортоантнмонату трехвалентной сурьмы Sb III Sb V O4. Легко восстанавливается углем до металла.
Гидроксид сурьмы(III) , сурьмянистая кислота, получается в виде белого осадка при действии щелочей на соли сурьмы(III):
SbCl3 + 3NаОН = Sb (OH)3 +3NaCl
Осадок легко растворяется как в избытке щелочи, так и в кислотах. При стоянии даже в воде легко переходит в кристаллический Sb2O3.
Сурьмяная кислота , существует в растворе в нескольких формах, например гексагидроксосурьмяная: H[Sb(OH)6]. При осаждении получают гель с переменным содержанием воды, при длительном высушивании — нерастворимую метасурьмяную кислоту HSbO3. Соли сурьмяной кислоты называются антимонатами.
Стибин , или гидрид сурьмы, SbH3 — ядовитый газ, образующийся в тех же условиях, что и арсин. При нагревании он еще легче, чем арсин, разлагается на сурьму и водород. Сурьма образует соединения с металлами — антимониды, которые можно рассматривать как продукты замещения водорода в стибине атомами металла. В этих соединениях сурьма, как и в SbH3, имеет степень окисления -3. Некоторые из антимонидов, в частности AlSb, GaSb и InSb, обладают полупроводниковыми свойствами и используются в электронной промышленности.
Соли сурьмы (III) , в водном растворе подвергаются гидролизу с образованием основных солей:
SbCl3 + 2H2O = Sb(OH)2Cl
Образующаяся основная соль неустойчива и разлагается с отщеплением молекулы воды:
Sb(OH)2Cl = SbOCl + H2O
В соли SbOCl группа SbO играет роль одновалентного металла; эту группу называют антимонилом. Полученная соль называется или хлоридом антимонила, или оксохлоридом сурьмы.
Пентахлорид сурьмы SbCl5 дымящая на воздухе жидкость, растворим в воде с гидролизом. Применение: хлорирующий агент, катализатор полимеризации.
Сульфиды сурьмы Sb2S3 и Sb2S5 по свойствам аналогичны сульфидам мышьяка. Они представляют собой вещества оранжево-красного цвета, растворяющиеся в сульфидах щелочных металлов и аммония с образованием тиосолей. Сульфиды сурьмы используются при производстве спичек и в резиновой промышленности, компоненты пиротехнических составов.

Применение:

Сурьму вводят в некоторые сплавы для придания им твердости. Сплав, состоящий из сурьмы, свинца и небольшого количества олова, называется типографским металлом или гартом и служит для изготовления типографского шрифта. Из сплава сурьмы со свинцом (от 5 до 15% Sb) изготовляют пластины свинцовых аккумуляторов, листы и трубы для химической промышленности, подшипники скольжения. Кроме того, сурьму применяют как добавку к германию для придания ему определенных полупроводниковых свойств.
Мировое производство (без СССР) — около 70 тысяч т/год (1977).
Сурьма и ее производные токсичны. ПДК 0,1-0,5 мг/м 3 .

Источник

Сурьма

51 Sb
Сурьма
Antimony
(Kr)4d 10 5s 2 5p 3

Атомный номер 51
Атомная масса 121,76
Плотность, кг/м³ 6620
Температура плавления, °С 630,5
Температура кипения, °С
Теплоемкость, кДж/(кг·°С) 0,205
Электроотрицательность 1,9
Ковалентный радиус, Å 1,40
1-й ионизац. потенциал, эв 8,64

Сурьма

Сурьма (лат. Stibium), Sb, химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных изотопа 121 Sb (57,25%) и 123 Sb (42,75%). Из искусственно полученных радиоактивных изотопов важнейшие 122 Sb (Т½ = 2,8 сут), 124 Sb (Т½ = 60,2 сут) и 123 Sb (Т½ = 2 года).

Историческая справка. Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 века до н. э. порошок сурьмяного блеска (природный Sb2S3) под названиями mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stimi и stibi, отсюда лат. stibium. Около 12-14 веков н. э. появилось название antimonium. В 1789 году А. Лавуазье включил Сурьму в список химических элементов под названием antimoine (современное англ. antimony, исп. и итал. antimonio, нем. Antimon). Русское «сурьма» произошло от турецкого surme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по других данным, «сурьма» — от персидского сурме — металл). Подробное описание свойств и способов получения Сурьмы и ее соединений впервые дано алхимиком Василием Валентином (Германия) в 1604 году.

Распространение Сурьмы в природе. Среднее содержание Сурьмы в земной коре (кларк) 5·10 -3 % по массе. В магме и биосфере Сурьма рассеяна. Из горячих подземных вод она концентрируется в гидротермальных месторождениях. Известны собственно сурьмяные месторождения, а также сурьмянортутные, сурьмяносвинцовые, золотосурьмяные, сурьмяновольфрамовые. Из 27 минералов Сурьмы главное промышленное значение имеет антимонит (Sb2S3). Благодаря сродству с серой Сурьма в виде примеси часто встречается в сульфидах мышьяка, висмута, никеля, свинца, ртути, серебра и других элементов.

Физические свойства Сурьмы. Сурьма известна в кристаллической и трех аморфных формах (взрывчатая, черная и желтая). Взрывчатая Сурьма (плотность 5,64-5,97 г/см 3 ) взрывается при любом соприкосновении; образуется при электролизе раствора SbCl3; черная (плотность 5,3 г/см 3 ) — при быстром охлаждении паров Сурьмы; желтая — при пропускании кислорода в сжиженный SbH3. Желтая и черная Сурьма неустойчивы, при пониженных температурах переходят в обыкновенную Сурьму. Наиболее устойчивая кристаллическая Сурьма, кристаллизуется в тригональной системе, а = 4,5064 Å; плотность 6,61-6,73 г/см 3 (жидкой — 6,55 г/см 3 ); tпл 630,5 °С; tкип 1635-1645 °С: удельная теплоемкость при 20-100 °С 0,210 кдж/(кг·К)[0,0498 кал/(г·°С)]; теплопроводность при 20 °С 17,6 вт/(м·К) [0,042 кал/(см·сек·°С)]. Температурный коэффициент линейного расширения для поликристаллической Сурьмы 11,5·10 -6 при 0-100 °С; для монокристалла а1 = 8,1·10 -6 , а2 = 19,5·10 -6 при 0-400 °С, удельное электросопротивление (20 °С) (43,045·10 -6 см·см). Сурьма диамагнитна, удельная магнитная восприимчивость -0,66·10 -6 . В отличие от большинства металлов, Сурьма хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддается ковке (иногда ее относят к полуметаллам). Механические свойства зависят от чистоты металла. Твердость по Бринеллю для литого металла 325-340 Мн/м 2 (32,5-34,0 кгс/мм 2 ); модуль упругости 285-300; предел прочности 86,0 Мн/м 2 (8,6 кгс/мм 2 ).

Химические свойства Сурьмы. Конфигурация внешних электронов атома Sb 5s 2 5p 3 . В соединениях проявляет степени окисления главным образом +5, +3 и -3. В химическом отношении Сурьма малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной Сурьме. Металл активно взаимодействует с хлором и других галогенами, образуя галогениды сурьмы. С кислородом взаимодействует при температуре выше 630 °С с образованием Sb2О3. При сплавлении с серой получаются сульфиды сурьмы, так же взаимодействует с фосфором и мышьяком. Сурьма устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют Сурьму с образованием хлорида SbCl3 и сульфата Sb2(SO4)3; концентрированная азотная кислота окисляет Сурьму до высшего оксида, образующегося в виде гидратированного соединения xSb2O5·уН2О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты — антимонаты (MeSbO3·3H2O, где Me — Na, К) и соли не выделенной метасурьмянистой кислоты — метаантимониты (MeSbO2·3H2O), обладающие восстановительными свойствами. Сурьма соединяется с металлами, образуя антимониды.

Получение Сурьмы. Сурьма получают пирометаллургической и гидрометаллургической переработкой концентратов или руды, содержащей 20-60% Sb. К пирометаллургическим методам относятся осадительная и восстановительная плавки. Сырьем для осадительной плавки служат сульфидные концентраты; процесс основан на вытеснении Сурьмы из ее сульфида железом: Sb2S3 + 3Fe=> 2Sb + 3FeS. Железо вводится в шихту в виде скрапа. Плавку ведут в отражательных или в коротких вращающихся барабанных печах при 1300-1400 °C. Извлечение Сурьмы в черновой металл составляет более 90%. Восстановительная плавка Сурьмы основана на восстановлении ее оксидов до металла древесным углем или каменноугольной пылью и ошлаковании пустой породы. Восстановительной плавке предшествует окислительный обжиг при 550 °С с избытком воздуха. Огарок содержит нелетучий оксид Сурьмы. Как для осадительной, так и для восстановительной плавок возможно применение электропечей. Гидрометаллургический способ получения Сурьмы состоит из двух стадий: обработки сырья щелочным сульфидным раствором с переводом Сурьмы в раствор в виде солей сурьмяных кислот и сульфосолей и выделения Сурьмы электролизом. Черновая Сурьма в зависимости от состава сырья и способа ее получения содержит от 1,5 до 15% примесей: Fe, As, S и других. Для получения чистой Сурьмы применяют пирометаллургическое или электролитическое рафинирование. При пирометаллургическом рафинировании примеси железа и меди удаляют в виде сернистых соединений, вводя в расплав Сурьмы антимонит (крудум) — Sb2S3, после чего удаляют мышьяк (в виде арсената натрия) и серу при продувке воздуха под содовым шлаком. При электролитическом рафинировании с растворимым анодом черновую Сурьму очищают от железа, меди и других металлов, остающихся в электролите (Cu, Ag, Au остаются в шламе). Электролитом служит раствор, состоящий из SbF3, H2SO4 и HF. Содержание примесей в рафинированной Сурьмt не превышает 0,5-0,8%. Для получения Сурьмs высокой чистоты применяют зонную плавку в атмосфере инертного газа или получают Сурьмe из предварительно очищенных соединений — оксида (III) или трихлорида.

Применение Сурьмы. Сурьма применяется в основном в виде сплавов на основе свинца и олова для аккумуляторных пластин, кабельных оболочек, подшипников (баббит), сплавов, применяемых в полиграфии (гарт), и т. д. Такие сплавы обладают повышенной твердостью, износоустойчивостью, коррозионной стойкостью. В люминесцентных лампах галофосфатом кальция активируют Sb. Сурьма входит в состав полупроводниковых материалов как легирующая добавка к германию и кремнию, а также в состав антимонидов (например, InSb). Радиоактивный изотоп 122 Sb применяется в источниках γ-излучения и нейтронов.

Сурьма в организме. Содержание Сурьмы (на 100 г сухого вещества) составляет в растениях 0,006 мг, в морских животных 0,02 мг, в наземных животных 0,0006 мг. В организме животных и человека Сурьма поступает через органы дыхания или желудочно-кишечный тракт. Выделяется главным образом с фекалиями, в незначительном количестве — с мочой. Сурьма избирательно концентрируется в щитовидной железе, печени, селезенке. В эритроцитах накапливается преимуществено Сурьма в степени окисления +3, в плазме крови — в степени окисления. +5. Предельно допустимая концентрация Сурьмы 10 -5 — 10 -7 г на 100 г сухой ткани. При более высокой концентрации этот элемент инактивирует ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сулъфгидрилъных групп).

Сурьма и ее соединения ядовиты. Отравления возможны при выплавке концентрата сурьмяных руд и в производстве сплавов Сурьмы. При острых отравлениях — раздражение слизистых оболочек верхних дыхательных путей, глаз, а также кожи. Могут развиться дерматит, конъюнктивит и т. д.

Источник

Оцените статью