Закрытый сосуд заполнен водой при температуре

Закрытый сосуд заполнен водой при температуре 17 градусов. Чему стало бы равным давление внутри сосуда, если бы взаимодействие между молекулами воды внезапно исчезло?

Ответ: Vср. = 2,5 км/ч

Объяснение: 2.5 м/с = 9 км/ч

200 м/мин = 12 км/ч

по формуле период равен 1 / частоту

PS: не забываем нажимать спасибо и отметить ответ как лучший)
Если что то не понятно пиши в личку
С/у zedw

1.8 так как тень больше в 2,5 раза ,а 4,5/2.5=1.8

Начальная температура воды: t₁ = 15 °C.

Начальная температура алюминиевого цилиндра: t₂ = 46 °C.

Масса воды (исправление из комментариев): m₁ = 0,05 кг.

Масса цилиндра: m₂ = 0,45 кг.

Удельная теплоёмкость воды: c₁ = 4200 Дж/(кг * °C).

Удельная теплоёмкость алюминия: c₂ = 920 Дж/(кг * °C).

Найти нужно общую температуру: t — ?

Решение:

0. Для начала поймём, что происходит с водой и цилиндром. В результате теплообмена между между ними установится одинаковая температура, т. е. вода нагреется до общей температуры, а цилиндр остынет до общей температуры. Как мы знаем, отданное тепло(т. е. тепло, полученное с остывания цилиндра)равняется полученному теплу(т. е. теплу, необходимому на нагревание воды).

1. Запишем уравнение теплового баланса:

2. Выразим общую конечную температуру t:

Перенесём все одночлены с t в одну сторону, а с t₁ и t₂ — в другую.

В левой части вынесем t за скобку.

Разделим обе части на скобку из левой части.

Источник

Закрытый сосуд заполнен водой при температуре

Почему чайник шумит сильнее перед тем как закипеть?

Задача по физике — 205

Правое колено U-образной трубки закрыто краном, а левое — открыто. В трубку налита вода. Поверх воды в правом колене имеется капля ртути высотой $h = 0,5 см$. Высота столба воды в правом колене $h_ <1>= 4 см$, в левом колене $h_ <2>= 10 см$. Поднимется или опустится капля ртути, если кран открыть? Плотность ртути в 13,6 раз
больше плотности воды.

Задача по физике — 206

Экспериментальная установка имеет рабочий объем $V=2,24 л$ находится в термостате с температурой $t_ <0>= 0^<\circ>C$. Перед началом эксперимента давление в рабочем объеме $p_ <0>= 0,3 атм$. В ходе эксперимента герметичность нарушилась, а затем ее восстановили. При этом масса воздуха в рабочем объеме увеличилась в два раза, а температура — на $\Delta T = 110 K$.
1) Объясните, почему повышается температура воздуха в рабочем объеме установки.
2) Найдите давление воздуха в установке сразу после восстановления герметичности ($p_<1>$) и через большой промежуток времени после него ($p_<2>$).

Задача по физике — 207

Металлический баллон со сжатым аргоном ($\mu = 0,04 кг/моль$) объемом $V = 44,8 л$ находится на улице. Температура окружающего воздуха $t = 0^<\circ>C$. Начальное давление в баллоне $p_ <0>= 15 атм$. В некоторый момент кран баллона ненадолго открывают и снова открывают. При этом из баллона успевает вытечь $\Delta m = 400 г$ газа, а внутренняя энергия газа, оставшегося в баллоне, оказывается в два раза меньше начальной энергии газа.
1) Какова температура газа в баллоне сразу после закрытия крана?
2) Найдите давление газа в баллоне сразу после закрывания крана на ($p_<1>$) и через большой промежуток времени после этого ($p_<2>$).

Задача по физике — 208

В экспериментальной камере, наполненной идеальным газом, установлены манометр и термометр. В исходном состоянии $p_<0>=2 \cdot 10^ <5>Па, T_ <0>= 400 К$. С некоторого момента давление и температура начинают возрастать и устанавливаются равными $p_ <1>= 3,6 \cdot 10^ <5>Па, T_ <1>= 600 К$. Какой эксперимент проводится в камере? Камеру считать герметичной, ее объем — постоянным.

Задача по физике — 209

В кастрюле находится вода при температуре $60^<\circ>C$. Кастрюлю закрывают крышкой, масса которой $m = 5 кг$, площадь $S = 100 cм^<2>$. Кастрюлю медленно нагревают до $70^<\circ>C$. Сколько раз подпрыгнет крышка за это время, если давление насыщенных паров при $60^<\circ>C$ равно $p_ <1>= 2 \cdot 10^ <4>Па$, при $60^<\circ>C p_ <2>= 3,1 \cdot 10^ <4>Па$, атмосферное давление $p_ <0>= 10^ <5>Па$.

Задача по физике — 210

В большую бочку с водой бросают раскаленные металлические шарики одинаковой температуры. Известно, что шарик радиусом $r_ <1>= 0,5 см$ нагревает воду на $\Delta t_ <1>= 0,1^<\circ>C$, радиусом $r_ <2>= 1 см$ на $\Delta t_ <2>= 1,2^<\circ>C$. Оцените изменение температуры воды для шариков радиусом $r_ <3>= 1,5 см$.

Задача по физике — 211

В два одинаковых закрытых литровых сосуда помещают по куску льда, каждый массой $m = 490 г$. Сосуды соединяют в верхней части трубкой. В первом сосуде поддерживают температуру $T_ <1>= 290 К$, в другом — $T_ <2>= 310 К$. Оцените разницу масс $\Delta M$ сосудов с их содержимым спустя большой промежуток времени после их соединения. Что при этом будет находиться в сосудах?

Задача по физике — 212

В вертикальном теплоизолированном цилиндрическом сосуде с площадью основания $S$ под поршнем массой $M$ находится 1 моль одноатомного идеального газа. В газе расположена проволочная спираль сопротивлением $r$, подсоединенная к источнику тока с ЭДС $\varepsilon$. Определите скорость $v$ подъема поршня. Атмосферное давление над поршнем равно $p_<0>$. Внутренним сопротивлением источника пренебречь.

Задача по физике — 213

В сосуде высотой $h$ находится очень вязкая жидкость с плотностью $\rho$. От дна сосуда отрывается и медленно всплывает маленький пузырек воздуха с начальным объемом $V_<1>$. Какое количество теплоты получит жидкость за время подъема пузырька? Атмосферное давление равно $p_<0>$. Теплообменом со стенками сосуда и окружающий воздухом пренебречь.

Задача по физике — 368

Доказать, что при абсолютном нуле температуры твердое тело должно быть кристаллическим.

Задача по физике — 375

Почему тонкая медная проволока плавится в пламени газовой плиты, в то время как толстый медный стержень даже не раскаляется докрасна?

Задача по физике — 377

От чего зависит показание термометра, прикрепленного снаружи к спутнику с его теневой стороны?

Задача по физике — 381

На улице целый день моросит холодный осенний дождь. В кухне развесили много выстиранного белья. Быстрее ли высохнет белье, если открыть форточку?

Задача по физике — 388

Закрытый сосуд заполнен водой при температуре 27 °С. Чему стало бы равным давление внутри сосуда, если бы взаимодействие между молекулами воды внезапно исчезло?

Источник

Закрытый сосуд заполнен водой при температуре

Решение задач по гидравлике запись закреплена

Определить изменение плотности жидкости (ρ = 1000 кг/м3) при изменении давления от р1 = 1 · 105 Па до р2 = 1 · 107 Па.

Определить плотность жидкости, полученной смешиванием 15 л жидкости плотностью ρ1 = 720 кг/м3 и 25 л жидкости плотностью ρ2 = 1000 кг/м3.

Каким должен быть объем нефтехранилища для размещения нефти массой 60 т, удельным весом γ = 8500 Н/м3?

Определить динамический коэффициент вязкости жидкости и ее относительный вес, если вязкость, определенная при помощи вис­козиметра Энглера, равна 18,5°Е. Удельный вес жидкости принять γ = 8,84 кН/м3.

Стальной трубопровод, заполненный водой при t1 = 10 °С, находится под давлением p = 2 · 106 Па. Диаметр трубопровода d = 0,4 м, длина 1 км. Определить давление воды в трубопроводе при повышении температуры до t2 = 15 °С.

В цилиндрическом резервуаре высотой 6 м находится бензин (βt = 0,0008°С-1). При температуре t1= 15°С бензин не доходит до края на 10 см. Определить, при какой температуре бензин начнет переливаться через край резервуара.

При гидравлическом испытании участка трубопровода диаметром 400 мм и длиной 600 м давление воды в трубе было повышено до 2,943 МПа. Через час оно снизилось до 1,962 МПа. Сколько воды вытекло через неплотности, если коэффициент объемного сжатия воды βр = 5 · 10-10 Па-1?

При заполнении объемного гидропривода рабочая жидкость (масло) имеет температуру t1 = 15 °C. Определить температуру t2, которую может приобрести масло в процессе работы, чтобы давление в системе гидропривода повысилось не более чем на Δp = 40 МПа. Вместимость системы (объем масла до его нагревания) Wн = 20 л, βt = 0,0009 °C-1, E = 1390 МПа. (Считать, что гидропривод заполнен маслом полностью, расширительные резервуары отсутствуют, деформацию элементов гидропривода не учитывать).

Две плоские стеклянные пластины опущены нижними концами в воду параллельно друг другу (рис. 10), расстояние между ними d = 0,2 мм. Определить дополнительное давление, возникающее в воде от действия сил поверхностного натяжения рпов, а также вы­соту h, на которую поднимется жидкость между пластинами. Ко­эффициент поверхностного натяжения воды принять равным 7,2 · 10-2 Н/м.

Капиллярная трубка (рис. 11) с внутренним диаметром 1 мм наполнена водой. Часть воды повисла внизу в виде капли, которую можно принять за часть сферы радиусом 5 мм. Определить дополнительные давления рдоп1 и рдоп2, возникающие от действия сил поверхностного натяжения, искривляющие верхние и нижние мениски. Чему будут равны эти давления, если вместо воды в капилляре будет находиться: спирт; бензин? Температуру жидкостей принять равной 20°С.

1.1. Гидростатическое давление. Методы и средства для измерения давления

В герметически закрытом сосуде (рис. 1.15) налиты две несмешивающиеся жидкости до уровня h3 = 7 м. Показание манометра, установленного в верхней части сосуда, p = 16 кПа. Удельный вес жидкости, образующей верхний слой γ1 = 8 кН/м3, толщина этого слоя h1 = 3 м. Удельный вес жидкости нижнего слоя γ2 = 10 кН/м3. На глубине h2 = 5 м от свободной поверхности жидкости в сосуде присоединен открытый пьезометр. Определить высоту hх, на которую поднимется жидкость в пьезометре. Чему будет равно избыточное давление на дне сосуда?

Два герметичных сосуда (рис. 1.16) наполнены жидкостями с удельными весами γ1 = 10 кН/м3 и γ2 = 12 кН/м3 на высоту h1 = 1 м и h2 = 2 м соответственно. Сосуды соединены изогнутой трубкой, частично заполненной жидкостями из сосудов. Между точками А и В находится воздух. Уровень свободной поверхности жидкости γ1 в ле вой ветви трубки относительно основания сосудов h3 = 0,4 м. Вертикаль ное расстояние между точками А и В h4 = 1 м. В верхних точ­ках сосудов установлены манометры. Показание первого манометра р1 =5 кПа. Чему равно показание второго манометра р2, а также из­быточное давление воздуха в точках А и В?

Две запаянные с одного конца трубки и заполненные жидкостями с удельными весами γ1 = 11 кН/м3 и γ2 = 10 кН/м3, опрокинуты в открытые сосуды с теми же жидкостями (рис. 1.17). В запаянных трубках жидкость поднялась на высоту h1 и h2, соответственно. Принимая давление паров рассматриваемых жидкостей равным нулю, определить величину атмосферного давления, если разность высот столбов этих жидкостей составляет 0,9 м. Как изменится разность уровней жидкостей в трубках, если атмосферное давление повысится на 2%?

Герметически закрытый сосуд (рис. 1.18) наполнен жидкостью с удельным весом γ1 до высоты h1 = 2 м. Избыточное давление в верхней части сосуда, измеренное манометром, p = 100 кПа. От сосуда отходит изогнутая трубка, заполненная жидкостью с удельным весом γ1, ртутью (ρрт = 13600 кг/м3) и жидкостью с удельным весом γ2 = 12 кН/м3. Высота уровней жидкостей в трубке h2 = 0,8 м, h3 = 1,5 м, h4 = 3,5 м. Определить удельный вес жидкости γ1.

Две трубы, заполненные жидкостями γ1 = 10 кН/м3 и γ2 = 15 кН/м3, соединены изогнутой трубкой, частично заполненной ртутью γ3 = 133,4 кН/м3 (рис. 1.19). Определить разность давлений Δр = р2 – р= в центрах этих труб, расположенных в одной горизонтальной плос­кости, если уровень ртути в правой ветви находится на высоте h1 = 0,5 м, а разность уровней ртути h2 = 2 м.

Герметично закрытый сосуд на высоту h1 = 1,5 м заполнен жидкостью, имеющей удельный вес γ1 = 10 кН/м3 (стр. 1.20). От дна сосуда отходит изогнутая трубка, заполненная в нижней части ртутью (γ2 = 133,4 кН/м3). Уровень ртути в правой ветви трубки находится ниже дна сосуда на h2 = 1,2 м. Разность уровней ртути h3 = 0,8 м. Над ртутью в левой ветви находится жидкость, плотность которой ρ3 = 2000 кг/м3. Показание манометра, установленного на крышке сосуда р = 127,72 кПа. Определить высоту столба жидкости h4 над ртутью в левой ветви.

Два герметичных сосуда (рис. 1.21), основания которых расположены на одной горизонтальной плоскости, наполнены жидкостями, имеющими разные удельные веса γ1 = 20 кН/м3 и γ2 = 10 кН/м3, на высоту h1 = 2 м и h2 = 1 м. Сосуды соединены изогнутой труб­кой, в которой между точками А и В находится воздушный пузырь. Нижний край пузыря расположен на высоте h3 = 0,8 м над основа­нием сосуда. Определить положение верхнего края пузыря hх, если показания манометров на крышках сосудов р1 = 100 кПа, р2 = 78 кПа. Чему равно избыточное давление в точках А и В?

Два резервуара установлены на одной горизонтальной плоскости (рис. 1.22), соединены изогнутой трубкой, в которой между точка­ми А и В находится газовый пузырь. Показание манометра левого резервуара, установленного на высоте h1 = 1 м над плоскостью осно­ваний резервуаров, р1 = 100 кПа, уровень жидкости в пьезометре правого резервуара h2 = 4,75 м. Жидкость в левом резервуаре имеет удельный вес γ1 = 10 кН/м3, в правом — γ2 =20 кН/м3. Определить положение верхнего края пузыря hх, если его нижний край находится на высоте h3 = 1 м от оснований резервуаров.

Два сосуда (рис. 1.23), основания которых расположены в одной горизонтальной плоскости, наполнены разными жидкостями с удельными весами γ1 = 10 кН/м3, γ2 = 20 кН/м3, соединены изогнутой труб­кой, в которой между жидкостями находится ртуть (γ3 = 133,4 кН/м3). В левом сосуде на высоте h1 = 3 м над плоскостью основания установлен манометр, показывающий давление р1 = 100 кПа. На крышке правого сосуда установлен манометр, его показание р2 = 192,72 кПа. Уровень жидкости в правом сосуде h2 = 1 м над плоскостью основа­ний. Определить разность уровней ртути hх, если ее верхний уровень находится на h3 = 0,8 м ниже плоскости оснований сосудов.

Герметично закрытый резервуар (рис. 1.24) заполнен водой до уровня h1 = 2,6 м относительно основания резервуара. Слева к резер­вуару присоединен пьезометр, уровень воды в котором относительно основания резервуара H. Справа к резервуару присоединена изогну­тая трубка, заполненная водой и ртутью, уровни которых располо­жены на высоте h2 = 0,6 м, h3 = 1,6 м, h4 = 0,8 м, h5 = 1,8 м от основа­ния сосуда. Плотность ртути ρ = 13 600 кг/м3.

Определить избыточное давление р0 воздуха в напорном баке. Какой высоты H должен быть пьезометр для измерения того же дав­ления р0? Как изменится высота H, если р0 увеличится на 10%?

Пренебрегая разностью высот гидросистемы (рис. 1.33), определить показание манометра p и вес груза G, лежащего на поршне 2, если для его подъема к поршню 1 приложена сила F = 1,8 кН. Диаметры поршней: D = 255 мм, d = 68 мм. Разностью высот пренебречь.

Определить избыточное давление жидкости р1 фиксируемое манометром, которое необходимо подвести к гидроцилиндру (рис. 1.34), чтобы преодолеть усилие, направленное вдоль штока F = 0,85 кН. Диаметры: цилиндра – D = 41 мм, штока – d = 16 мм. Давление в бачке р0 = 41 кПа, высота Н0 = 4,55 м. Силу трения не учитывать. Плотность жидкости ρ = 1000 кг/м3.

Определить давление р в верхнем цилиндре гидропреобразователя (мультипликатора) (рис. 1.35), если показание манометра, присоединенного к нижнему цилиндру, рм = 0,35 МПа. Поршни перемешаются вверх, причем сила трения составляет 10 % силы давления жидкости на нижний поршень. Вес поршней G = 3,7 кН. Диаметры поршней: D = 370 мм, d = 75 мм; высота Н = 2 м; плотность масла ρ = 900 кг/м3.

Определить показание мановакуумметра pмв, если к штоку поршня (рис. 1.36) приложена сила F = 0,95 кН, его диаметр D = 85 мм, высота Н = 0,98 м, плотность жидкости ρ = 800 кг/м3.

Определить силу F, действующую на шток гибкой диафрагмы (рис 1.37), если ее диаметр D = 225 мм, показание вакуумметра pвак = 10 кПа, высота h = 1,2 м. Площадью штока пренебречь. Найти абсолютное давление в левой полости, если hатм = 760 мм рт. ст.

Определить силу F на штоке золотника (рис. 1.38), если показание вакуумметра pвак = 43 кПа, избыточное давление p1 = 0,68 МПа, высота h = 2,65 м, диаметры поршней D = 60 мм и d = 17 мм, ρ = 990 кг/м3.

При подъеме груза (рис. 1.40) массой 6 т на высоту 0,45 м воспользовались гидравлическим домкратом с кпд 75%. Отношение площадей большого поршня к малому ω1/ω2 = D2/d2 = 100, ход малого поршня 0,2 м. Сколько ходов сделает малый поршень для подъема груза? Какое максимальное усилие F необходимо приложить к рукоятке при ходе нагнетания, если a/b = 10? Весами обоих поршней пренебречь.

С какой силой каждая из тормозных колодок 1 (рис. 1.42) будет прижиматься к тормозному барабану 2 колеса, если сила нажатия на малый поршень F = 850 Н? Диаметр малого поршня d = 310 мм, больших поршней D = 390 мм.

1.2. Сообщающиеся сосуды. Закон Паскаля

Стеклянная трубка (рис. 1.58) с одной стороны закрыта пластиной и опущена этим концом вертикально в воду на глубину 0,68 м. Какой высоты нужно налить в трубку ртуть или керосин, чтобы плас­тика отпала?

В вертикальной перегородке закрытого резервуара (рис. 1.59) пря­моугольная крышка шириной b = 0,4 м и высотой h = 0,5 м перекры­вает отверстие. Правый отсек заполнен нефтью (ρ = 870 кг/м3) под избыточным давлением 12 кПа, левый — воздухом. Показание ртут­ною мановакуумметра, подключенного к левому отсеку резервуара, hрт = 60 мм. Определить значение и точку приложения силы давле­ния нефти на крышку, если ее центр тяжести расположен на глубине Н = 0,75 м от свободной поверхности нефти. Атмосферное давление принять 100 кПа.

Открытый резервуар заполнен тремя несмешивающимися жидкостями (рис. 1.60), имеющими удельный вес и высоту слоя соответственно γ1 = 7,8 кН/м3, h1 = 1 м; γ2 = 9,81 кН/м3, h2 = 0,7 м; γ3 = 133,4 кН/м3, h3 = 0,3 м. Определить силу избыточного давления на наклонную (α = 60°) боковую стенку резервуара, если ее ширина b = 2 м. Расчет выполнить графоаналитическим методом, построив эпюры давления.

Определить натяжение каната Т, удерживающего затвор (рис. 1.61), который закрывает круглое отверстие r = 1 м в плоской наклонной стенке, если заданы следующие линейные размеры: H = 3м; l = 1,8ми углы α1 = α2 = 60º.

Определить результирующую силу избыточного давления воды, действующую на плоскую ломаную стенку (рис. 1.62) шириной b = 2 м; глубина воды h = 2 м, высота нижней части стенки h1 = 1 м, угол наклона верхней части стенки к горизонтальной плоскости α = 45°. Давление на свободную поверхность жидкости – атмосферное. Построить эпюру избыточного давления воды на стенку и найти координату центра давления стенки.

Четыре стенки, наклоненные к горизонтальной плоскости под углом 90°, 60°, 45° и 30° соответственно, показаны на рис. 1.63. Ши­рина каждой из стенок b = 1 м. Определить силу гидростатического давления воды на каждую из стенок, если уровень воды h = 1 м; на свободную поверхность воды действует атмосферное давление. На каком вертикальном расстоянии от свободной поверхности на­ходится центр давления?

Промежуточная вертикальная стенка делит емкость (рис. 1.64) шириной b = 1,2 м на два отсека. Определить значение равнодействующей сил избыточного гидростатического давления на эту стенку и точку ее приложения, а также точки приложения сил P1 и P2, если уровень воды в левом отсеке h1 = 1200 мм, а в правом – h2 = 480 мм.

Щит, перекрывающий ирригационный канал, расположен под углом α = 45° к горизонту и прикреплен шарнирно к опоре над водой (рис. 1.65). Пренебрегая весом щита и трением в шарнире, определить усилие, которое необходимо приложить к тросу для открывания щита, если его ширина b = 1,5 м, глубина воды перед щитом h1 = 3 м, за щитом h2 = 2 м. Шарнир расположен на расстоянии h3 = 1,5 м над высшим уровнем воды.

Емкость, наполненная жидкостью с плотностью ρ = 750 кг/м3, имеет форму перевернутой вершиной вниз пирамиды (рис. 1.66). Определить силы давления жидкости, действующие на каждую грань емкости, если рм = 200 кПа, Н = 5 м, h = 1,5 м и стороны основания пирамиды: а = 1,1 м; b = 0,8 м.

Определить силу давления масла (γ = 8650 Н/м3) на болты крышки (рис. 1.67), которая имеет форму прямоугольника высотой a = 0,64 м и шириной b = 1,5 м. Показание манометра рм = 120 кПа, высота h = 2 м.

В нижней части вертикальной плоской стенки открытого резервуара имеется проем прямоугольной формы шириной b = 4 м, закрытый криволинейной крышкой ab в виде четверти боковой поверхности цилиндра радиусом r = 1 м (рис. 1.68). Глубина воды в резервуаре h = 3 м.

Определить значение и направление действия силы P давления воды на крышку.

Металлическая цистерна диаметром d = 1,8 м и длиной l = 10 м полностью заполнена минеральным маслом γ = 9000 Н/м3 (рис. 1.69). Давление на поверхности масла – атмосферное. Чему равна сила избыточного давления масла на внутреннюю поверхность цистерны abc?

Определить значение и направление действия силы гидростатического давления бензина (γ = 7,6 кН/м3) на полуцилиндрическую крышку радиусом r = 1 м, закрывающую прямоугольное отверстие в вертикальной стенке герметично закрытого резервуара (рис. 1.70). Показание манометра, подключенного над свободной поверхностью бензина, рм = 15 кПа. Центр отверстия расположен на глубине h = 2 м от свободной поверхности.

Секторный затвор (рис. 1.71) радиусом r = 1,2 м закрывает донное отверстие прямоугольной формы в плотине. Определить значение и направление действия силы избыточного давления воды на затвор, если напор на плотине h = 5 м, ширина отверстия b = 2,5 м.

С какой силой жидкость (ρ = 800 кг/м3) воздействует на цилиндрическую крышку (рис. 1.72) радиусом r = 0,5 м и длиной l = 2 м, если избыточное давление на свободной поверхности pизб = 15 кПа?

Закрытый резервуар наполнен жидкостью на глубину h = 2,5 м?

Герметично закрытый резервуар (рис. 1.74) наполнен двумя несмешивающимися (ρ1 = 800 кг/м3, ρ2 = 1000 кг/м3) жидкостями на глубину h1 = 0,5 м и h2 = 1,6 м. На свободной поверхности жидкости избыточное давление равно 12 кПа. Определить значение и направление действия силы избыточного давления на полуцилиндрическую крышку диаметром d = 0,8 м, длиной l = 2,5 м, в вертикальной стенке резервуара.

Герметически закрытый резервуар наполнен жидкостью, имеющий плотность ρ = 870

Источник

Читайте также:  Вода для здоровая пища
Оцените статью