- Почему вода нагревается быстро, а охлаждается так медленно?
- Быстрый нагрев и медленное охлаждение
- Тепло — вид энергии
- Почему горячая вода замерзает быстрее холодной
- Эксперименты с мороженым
- Версии объяснения данного эффекта
- Зимой вода остывает медленно
- В области каких температур вода остывает быстрее
- Быстрый нагрев и медленное охлаждение
- Тепло – вид энергии
- Эксперименты с мороженым
- Версии объяснения данного эффекта
Почему вода нагревается быстро, а охлаждается так медленно?
Сегодня довести воду до кипения не представляет каких-либо трудностей. Для этого нужно всего лишь включить на кухне плиту и поставьте на нее чайник. Обычно кипячение воды занимает всего несколько минут. Но вы наверняка замечали, что после кипения вода охлаждается до своей первоначальной температуры гораздо дольше. Чтобы остыть до двадцати градусов по Цельсию может потребоваться несколько часов (в зависимости от конструкции чайника). Почему вода нагревается быстро, а охлаждается так медленно?
Быстрый нагрев и медленное охлаждение
Давайте рассмотрим это явление на примере металлического чайника, наполненного водой. Вода, которую нужно нагреть от нормальной комнатной температуры (около 20 градусов по Цельсию) до температуры кипения, должна преодолеть разницу в 80 градусов. При этом она поглотит определенное количество энергии, которая преобразуется в кинетическую энергию молекул воды.
Количества тепла, необходимое для нагрева тела определенной температурой, можно рассчитать с использованием следующего соотношения:
Q = масса тела * удельная теплоемкость * разница температур
Из этой простой формулы есть несколько интересных следствий. Чем больше масса тела, тем больше тепла оно потребляет. Разные вещества потребляют разное количество энергии. Чем выше желаемая температура, тем больше энергии нам потребуется на нагрев.
Охлаждение работает точно так же, но с одним небольшим отличием — тепло в этом случае передается от горячей воды во внешнее пространство вокруг чайника.
Температура варочной панели обычно составляет несколько сотен градусов Цельсия. Поэтому она может передавать значительное количество энергии в воду и быстро нагревать ее до температуры, при которой она начинает испаряться (100 °С) Для такого же быстрого охлаждения нам понадобится такая же большая разница температур – температура внешней среды должна быть минус несколько сотен градусов Цельсия. Безусловно, ничего подобного в природе не встречается, поскольку минимальный предел температуры, которую может иметь физическое тело во Вселенной -273,15°С (абсолютный ноль температуры). А наш хладагент (воздух вокруг чайника) имеет температуру около + 20 °C. Таким образом, охлаждение происходит намного медленнее, чем нагрев воды.
Тепло — вид энергии
Большинство людей недооценивает количество энергии, которую потребляет вода для ее нагрева. Для нагрева 1 кг воды на 1 градус требуется 4187 Дж. На первый взгляд это не очень интересно.
Но представьте, что мы приложим то же количество энергии не для нагрева 1 кг воды, а для ее ускорения (кинетическая энергия).
Источник
Почему горячая вода замерзает быстрее холодной
Холодная погода характерна для большей части нашей страны. Кроме катания на лыжах в это время можно проводить некоторые эксперименты с водой. Например, бросать в воздух горячую воду, делая тем самым снег. Этот эффектный трюк основан на интересном факте, известном ещё со времён Аристотеля.
Описывается он просто — горячая вода замерзает быстрее холодной. Данное свойство получило название эффекта Мпембы. Танзанийский школьник обнаружил это явление в 1963 году. Так почему же горячая вода замерзает быстрее холодной?
Эксперименты с мороженым
Эрасто Мпемба и другие дети в его школе часто делали мороженое, используя школьную морозильную камеру. Процесс был таков: они кипятили молоко и смешивали его с сахаром. После чего эту смесь помещали в морозилку. И однажды Мпемба поспешил и положил получившуюся субстанцию охлаждаться в разгоряченном состоянии.
Получилось так, что его мороженое получилось быстрее, чем у одноклассника. Но школьнику мало кто поверил, и в 1969 году Мпемба вместе с профессором физики опубликовали статью по этому поводу. Данный эффект наблюдается не всегда, поэтому если вы попытаетесь повторить его дома, далеко не факт, что это произойдёт. Вероятно, на это есть несколько причин .
Версии объяснения данного эффекта
Обнаружение эффекта Мпембы не позволило с абсолютной точностью объяснить данное явление. Полностью понять этот процесс пока не получилось, но научных споров ведётся много. И существует несколько версий объяснения эффекта Мпембы.
Наиболее часто выдвигаемая гипотеза — горячая вода испаряется из-за потери массы. В результате жидкость замерзает, теряя меньше тепла. Однако были случаи, когда эффект Мпембы наблюдался и в закрытых контейнерах, где испарения не было.
Другое предположение состоит в том, что вода развивает конвекционные потоки и температурные градиенты по мере ее охлаждения. Быстро остывающий стакан с горячей водой будет иметь большие перепады температур и быстрее отводить тепло от поверхности. В то время как равномерно охлаждённый стакан воды имеет меньшую разницу температур. Также получается меньше конвекции, ускоряющей процесс.
Существуют также и другие теории. Например, согласно одной из них все дело во влиянии растворенных газов в воде на процесс замораживания. В 2013 году группа исследователей из Сингапура предложила свою версию объяснения эффекта Мпембы. По их словам, разгадка кроется в уникальных свойствах химических связей в воде.
Как известно, стандартная молекула воды содержит один атом кислорода и два атома водорода. Они соединены ковалентными связями. Но когда происходит соединение нескольких молекул, атомы водорода также образуют связи с атомами кислорода в других молекулах. Эти водородные связи придают воде некоторые ее свойства, такие как относительно высокая температура кипения и уменьшенная плотность при заморозке.
Исследователи считают, что во время кипения воды молекулы растекаются, удлиняя водородные связи. Но из-за ограниченного объема ковалентные связи в отдельных молекулах сжимаются, накапливая энергию. Если вода замерзает в таком состоянии, связи высвобождают энергию в виде «размотанной пружины», охлаждаясь гораздо быстрее.
Но не все эксперты согласны с такой трактовкой эффекта Мпембы. Кто-то обвиняет экспертов в том, что их теория могла бы предсказать новое свойство воды. Однако его нет в привычном понимании. Химик Ричард Заре из Стэнфордского университета вовсе считает, что быстрое замерзание горячей воды преимущественно зависит от испарения.
Скорее всего, именно из-за этого и происходит эффект Мпембы. Возможно, в будущем ученым удастся полностью доказать это или привнести какие-то поправки к объяснению.
Источник
Зимой вода остывает медленно
И вот, начались отрицательные температуры. Сегодня под утро обещают до -3, и уже сейчас на термометре 0.
Выпал снег, и появилась угроза замерзания воды в садовом водопроводе:
Компостная куча и деревья в снегу:
Ветви ели и электрические провода в снегу:
Все сливают воду из летних водопроводов. Я пока не слил, и на то у меня есть две причины — побудительная и рассудительная. Побудительная — не хочется несколько дней до намеченного отъезда в город пользоваться холодным рукомойником. А рассудительная причина объясняет, почему этого можно действительно не делать.
Начну с того, что на даче я живу только в тёплое время года, когда температуры воздуха исключительно положительные. Дом у меня хотя и утеплённый, но по своим теплоизоляционным характеристикам не предназначен для зимнего проживания. Да, он утеплён слоями пенопласта и фольгированной изоляцией, но это утепление недостаточно для существенных температурных минусов. Поэтому и с водопроводом я особенно не стал заморачиваться. Погружной насос в колодце накачивает воду в гидроаккумулятор, находящийся в неотапливаемом хозблоке, по трубе ПНД диаметром 32 мм, а раздача на восемь точек на участке идёт трубами ПНД диаметром 25 мм. Трубы, где они не мешают, лежат прямо на поверхности земли, а в других местах просто слегка углублены в грунт.
Из школьного курса физики я точно знаю, что точка перехода воды из жидкого состояния в твёрдое находится на отметке 0 градусов. Но что-то мне подсказывало, что температура замерзания воды в трубе будет немного ниже. Чётко объяснить причину такого ощущения я не мог, и полез в Интернет, чтобы узнать точно, при какой температуре вода в трубах реально замерзает. И действительно, я нашёл информацию, что для замерзания воды в трубе нужны температуры -5 — -7 градусов, стоящие в течение несколько дней! Не знаю, насколько это правда, но это означало, что, по крайней мере, одну ночь при температуре -3 водопровод точно должен выдержать.
То, что чёрная пластиковая труба ПНД идёт в верхнем плодородном слое земли, в котором продолжают происходить процессы гниения с непременным выделением тепла, внушает мне дополнительный оптимизм. Ну и, наконец, я особенно ничем не рискую — труба ПНД переносит достаточное количество циклов замерзания-оттаивания воды в ней. Максимум что может произойти — ослабнут фитинги, но их всегда можно подкрутить. Гидроаккумулятор стоит хоть в неотапливаемом, но закрытом помещении, что тоже должно способствовать его защите от небольшого минуса. В общем, я решил пока что воду не сливать. Хотя тревожат закрытые шаровые краны, те, что на улице. Пожалуй, это единственное слабое место. Если они не переживут ночь, придётся думать дальше. Но эксперимент есть эксперимент. Завтра отпишусь о результатах (если будет время в перерывах между проливами труб кипятком )))
P.S.: Знаю ещё, что не замерзает текущая вода. Видимо потому, что не успевает выстроится кристаллическая решётка. Ну и если речь о водопроводе, то новые порции воды всегда на несколько градусов теплее нуля. Так, на дне колодца температура воды около +4 градусов. Так что при экстремальном минусе можно немного приоткрыть краники на концах раздаточных водопроводных линий. Главное, чтобы вода в колодце не кончилась )))
А вот статическое давление на температуру замерзания влияет очень слабо. Так, чтобы точку замерзания сместить на 1 градус ниже нуля, нужно 130 атмосфер. В водопроводе же всего около 3 атмосфер. Так что часто встречающийся в Интернете и безбожно растиражированный бред про незамерзающие из-за давления колонки в деревнях — полная чушь. В колонке выше глубины промерзания грунта воды просто нет. Она там появляется только при нажатии на рычаг, и стекает обратно при его отпускании. Чтобы убедиться в этом, достаточно посчитать количество времени, проходящее между нажатием на рычаг и появлением из колонки воды, или просто изучить конструкцию колонки в Интернете.
UPD 18.10.2014 18:10:
Отчитываюсь. Ночью было -1,5 градуса.
- Трубы ПНД диаметром 32 и 25 мм, проложенные просто по земле, а также слега присыпанные землёй не замёрзли. То же и с трубами рядом со стенами неотапливаемых помещений, расположенных у меня до высоты 150 см. То есть трубы ПНД никакие не замёрзли нигде несмотря на полное отсутствие в них движения воды.
- Закрытые шаровые краны 15 мм (1/2″) замёрзли, но их не порвало. Очень быстро оттаили после полива их сверху горячей водой.
- Узкие гибкие подводки и керамические краны рукомойника замёрзли, но тоже быстро оттаили после полива их сверху горячей водой.
- Гидроаккумулятор 50 литров в неотапливаемом помещении не замёрз.
- Температура в 30-литровом бойлере, установленном в неотапливаемом душе, за ночь упала с 75 до 45 градусов.
Таким образом констатирую, что несмотря на критичную температуру -1,5 градуса, система выдержала. А вот на участке catslover ситуация иная. Там труба ПНД 25 мм, проложенная в 2 метрах над землёй не замёрзла, а такая же труба, проложенная по забору в 50-80 см над землёй — замёрзла. Возможно, в полуметре над землёй температура ниже, чем на высоте 2 метров, а у самой земли температура снова поднимается за счёт выделения тепла из недр, тепла, накопленного за день, а также за счёт выделения тепла в процессе гниения органики в плодородном слое.
Сейчас температура держится у отметки -0,5 градусов. Ещё утром все шаровые краны и краны уличного умывальника я немножко приоткрыл, чтобы из них тоненькой струйкой сочилась вода. За день они не замёрзли. Надеюсь, что в таком режиме они переживут и ночь. Расход воды небольшой, колодец опустошиться не должен. О том, как система переживёт вторую ночь отрицательных температур, отпишусь завтра.
UPD 19.10.2014 02:10:
В общем, эксперимент пришлось прервать из-за отсутствия достаточного количества воды в колодце )))
У меня из 8 точек разбора воды 7 находятся на улице. Поскольку они все были приоткрыты во избежание порчи шаровых кранов, то за день они высосали у меня весь колодец! Осень была довольно сухая, и дебет колодца сейчас весьма низок. В итоге я слил таки всю воду из системы и вытащил насос.
В следующем году думаю докупить 15 метров ПНД 25 мм и пару шаровых, и разделить всю свою систему на 2 части — дом и всё остальное. При минусах буду сливать всё, кроме линии на дом. Если 7 струек выкачали колодец за 10 часов, то одна струйка выкачает его за 3 дня. Возможно, в этом случае дебет колодца будет достаточным для того, чтобы он успевал восполнять выкаченное. Вот так )
UPD 19.10.2014 17:10:
Интересное наблюдение. Ночью было -7,5 градусов. На бочках лёд около 2 сантиметров, причём и сверху, и на стенках. А вот на дне нет! Значит, тепло от земли идёт. Стало быть, правильно я водопровод по земле проложил, а не по забору. А ведь хотел по забору.
Источник
В области каких температур вода остывает быстрее
Сегодня довести воду до кипения не представляет каких-либо трудностей. Для этого нужно всего лишь включить на кухне плиту и поставьте на нее чайник. Обычно кипячение воды занимает всего несколько минут. Но вы наверняка замечали, что после кипения вода охлаждается до своей первоначальной температуры гораздо дольше. Чтобы остыть до двадцати градусов по Цельсию может потребоваться несколько часов (в зависимости от конструкции чайника). Почему вода нагревается быстро, а охлаждается так медленно?
Быстрый нагрев и медленное охлаждение
Давайте рассмотрим это явление на примере металлического чайника, наполненного водой. Вода, которую нужно нагреть от нормальной комнатной температуры (около 20 градусов по Цельсию) до температуры кипения, должна преодолеть разницу в 80 градусов. При этом она поглотит определенное количество энергии, которая преобразуется в кинетическую энергию молекул воды.
Источник изображения: mineral-medix.com
Количества тепла, необходимое для нагрева тела определенной температурой, можно рассчитать с использованием следующего соотношения:
Q = масса тела * удельная теплоемкость * разница температур
Из этой простой формулы есть несколько интересных следствий. Чем больше масса тела, тем больше тепла оно потребляет. Разные вещества потребляют разное количество энергии. Чем выше желаемая температура, тем больше энергии нам потребуется на нагрев.
Охлаждение работает точно так же, но с одним небольшим отличием – тепло в этом случае передается от горячей воды во внешнее пространство вокруг чайника.
Температура варочной панели обычно составляет несколько сотен градусов Цельсия. Поэтому она может передавать значительное количество энергии в воду и быстро нагревать ее до температуры, при которой она начинает испаряться (100 °С) Для такого же быстрого охлаждения нам понадобится такая же большая разница температур – температура внешней среды должна быть минус несколько сотен градусов Цельсия. Безусловно, ничего подобного в природе не встречается, поскольку минимальный предел температуры, которую может иметь физическое тело во Вселенной -273,15°С (абсолютный ноль температуры). А наш хладагент (воздух вокруг чайника) имеет температуру около + 20 °C. Таким образом, охлаждение происходит намного медленнее, чем нагрев воды.
Тепло – вид энергии
Большинство людей недооценивает количество энергии, которую потребляет вода для ее нагрева. Для нагрева 1 кг воды на 1 градус требуется 4187 Дж. На первый взгляд это не очень интересно.
Но представьте, что мы приложим то же количество энергии не для нагрева 1 кг воды, а для ее ускорения (кинетическая энергия).
Источник изображения: dw.com
Согласно формуле E = (m * v2) / 2, 1 кг воды при приложении 4187 Дж энергии достигнет скорости 329 км / ч. Это скорость, которую развивают некоторые скоростные поезда при оптимальных условиях.
Точно так же эта энергия может быть затрачена на преодоление гравитационного поля Земли. Тогда 1 кг воды будет находиться на высоте 426 метров (высота Эйфелевой башни 324 метра)
Эйфелева Башня. Источник изображения: REUTERS/Gonzalo Fuentes
До сих пор мы говорили о количестве энергии, необходимой для повышения температуры воды на один градус….А теперь представьте, какое количество энергии скрывается в 62 кг «живого веса» человека ( (среднее значение), если наши тела обычно на 20 градусов теплее окружающей среды.
Источник изображения: pixabay.com
Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!
Парадокс Мпембы — один из множества примеров, как наше мышление достраивает картину мира, которая в итоге может категорически не совпасть с реальностью. Мышление нас обманывает. Вода не стремиться поразить нас никакими «фокусами»: реальность такая, какая она есть, и если какая-нибудь часть реальности противоречит нашему представлению о ней, мы называем это парадоксом.
Парадокс Мпембы. Почему горячая вода замерзает быстрее холодной.
Многие из нас в детстве, а также в юношестве, часто экспериментировали с физическими явлениями, в том числе с замерзанием воды. Как ни странно, но многие из нас знают, что почему-то катки принято заливать горячей водой, а не холодной, потому что она быстрее замерзает.
Об этом факте было известно очень давно, еще со времен Аристотеля, а также Декарта. Однако каких-то научных подтверждений не было. Только в 1963 году начались существенные работы, основная задача которых выяснить, почему так происходит.
Парадокс Мпембы. Почему горячая вода замерзает быстрее холодной.
Согласно физике, это противоречит первому закону термодинамики, согласно которому одна энергия перетекает в другую. По первому началу термодинамики нагретая жидкость, перед тем как отвердеть, должна пройти температуру охлаждения, соответственно и время отвердения должно быть гораздо больше.
Однако на практике происходит иначе. Об этом задумался школьник, который задал своему учителю физики соответствующий вопрос. Мальчик готовил дома мороженое, и заметил, что стакан с теплой жидкостью замерз гораздо быстрее, нежели с прохладной, при одинаковом составе субстанции.
Тогда учитель лишь посмеялся над парнем, сказав, что это противоречит первому закону термодинамики, поэтому невозможно. После визита в школу известного физика Осборна, мальчик задал ему тот же вопрос, чем заинтересовал ученого.
Парадокс Мпембы. Почему горячая вода замерзает быстрее холодной.
Именно с 1963 года Осборн, вместе с мальчиком, начали заниматься этим вопросом, в результате чего была опубликована статья, в журнале educacion. При этом точного ответа, почему же нагретая жидкость отвердевает быстрее холодной, не было получено.
По мнению некоторых ученых, теплый раствор в холодильнике с термостатом переходит в твердое состояние гораздо быстрее лишь по той причине, что холодильник начинает сильнее морозить, при поступлении сигнала о повышении температуры в камере. Этого не происходит с охлажденной жидкостью, так как ее температура гораздо ниже, и термостат работает в обычном режиме, без снижения температуры хладагента. Однако эта версия не получила подтверждение по той причине, что нагретая жидкость в обычных условиях на воздухе, также отвердевает гораздо быстрее, чем холодная. Соответственно термостата в обычных уличных условиях нет, поэтому и усиления холода не происходит.
Парадокс Мпембы. Почему горячая вода замерзает быстрее холодной.
Однако удалось выяснить, что нагретая жидкость, из-за наличия над поверхностью большого количества испарений, отвердевает гораздо быстрее по причине того, что на поверхности образуются пары, объем жидкости в контейнере уменьшается. Тем самым удается заморозить меньшее количество жидкости, что гораздо проще, чем большее. Однако на практике потеря объема незначительная, поэтому и процесс затвердения нельзя считать оправданным.
Многие ученые сходятся во мнении, что нагретая жидкость, из-за наличия испарений, начинает превращаться в лед быстрее. Ледяные капельки над поверхностью, попадают в воду, что способствует образованию корки льда, из-за чего происходит быстрый процесс превращения в лед.
Научные работники выяснили, что, если поставить емкость с теплой жидкостью на снег, или ледяную корку в холодильнике, она начинает плавиться, в результате чего контакт между емкостью, водой в ней, а также холодильником, увеличивается, тем самым увеличивается площадь соприкосновения, в результате чего происходит быстрое замерзание теплой воды. Охлажденная вода не оказывает такого эффекта из-за того, что под ней снежная подушка не плавится, и процесс превращения в лед происходит гораздо медленнее. Кроме того, удалось выяснить, что холодная жидкость, при снижении температуры, начинается отвердевать в верхней части. В результате этого ухудшаются процессы смешения воды внутри, поэтому и процесс затягивается. Нагретая жидкость начинает замерзать снизу, тем самым усиливая процессы конвекции, теплоизлучения.
Парадокс Мпембы. Почему горячая вода замерзает быстрее холодной.
В 2017 году была опубликована гипотеза, согласно которой эффект Мпембы, который касается нагрева охлажденной системы, не соответствует равновесию. Поэтому под этот парадокс не подходят все основные законы физики и термодинамики.
Однозначного ответа на вопрос, какие эксперименты обеспечивают стопроцентное воспроизведение эффекта Мпембы, так и не было получено.
Холодная погода характерна для большей части нашей страны. Кроме катания на лыжах в это время можно проводить некоторые эксперименты с водой. Например, бросать в воздух горячую воду, делая тем самым снег. Этот эффектный трюк основан на интересном факте, известном ещё со времён Аристотеля.
Описывается он просто — горячая вода замерзает быстрее холодной. Данное свойство получило название эффекта Мпембы. Танзанийский школьник обнаружил это явление в 1963 году. Так почему же горячая вода замерзает быстрее холодной?
Эксперименты с мороженым
Эрасто Мпемба и другие дети в его школе часто делали мороженое, используя школьную морозильную камеру. Процесс был таков: они кипятили молоко и смешивали его с сахаром. После чего эту смесь помещали в морозилку. И однажды Мпемба поспешил и положил получившуюся субстанцию охлаждаться в разгоряченном состоянии.
Получилось так, что его мороженое получилось быстрее, чем у одноклассника. Но школьнику мало кто поверил, и в 1969 году Мпемба вместе с профессором физики опубликовали статью по этому поводу. Данный эффект наблюдается не всегда, поэтому если вы попытаетесь повторить его дома, далеко не факт, что это произойдёт. Вероятно, на это есть несколько причин.
Версии объяснения данного эффекта
Обнаружение эффекта Мпембы не позволило с абсолютной точностью объяснить данное явление. Полностью понять этот процесс пока не получилось, но научных споров ведётся много. И существует несколько версий объяснения эффекта Мпембы.
Наиболее часто выдвигаемая гипотеза — горячая вода испаряется из-за потери массы. В результате жидкость замерзает, теряя меньше тепла. Однако были случаи, когда эффект Мпембы наблюдался и в закрытых контейнерах, где испарения не было.
Другое предположение состоит в том, что вода развивает конвекционные потоки и температурные градиенты по мере ее охлаждения. Быстро остывающий стакан с горячей водой будет иметь большие перепады температур и быстрее отводить тепло от поверхности. В то время как равномерно охлаждённый стакан воды имеет меньшую разницу температур. Также получается меньше конвекции, ускоряющей процесс.
Существуют также и другие теории. Например, согласно одной из них все дело во влиянии растворенных газов в воде на процесс замораживания. В 2013 году группа исследователей из Сингапура предложила свою версию объяснения эффекта Мпембы. По их словам, разгадка кроется в уникальных свойствах химических связей в воде.
Как известно, стандартная молекула воды содержит один атом кислорода и два атома водорода. Они соединены ковалентными связями. Но когда происходит соединение нескольких молекул, атомы водорода также образуют связи с атомами кислорода в других молекулах. Эти водородные связи придают воде некоторые ее свойства, такие как относительно высокая температура кипения и уменьшенная плотность при заморозке.
Исследователи считают, что во время кипения воды молекулы растекаются, удлиняя водородные связи. Но из-за ограниченного объема ковалентные связи в отдельных молекулах сжимаются, накапливая энергию. Если вода замерзает в таком состоянии, связи высвобождают энергию в виде «размотанной пружины», охлаждаясь гораздо быстрее.
Но не все эксперты согласны с такой трактовкой эффекта Мпембы. Кто-то обвиняет экспертов в том, что их теория могла бы предсказать новое свойство воды. Однако его нет в привычном понимании. Химик Ричард Заре из Стэнфордского университета вовсе считает, что быстрое замерзание горячей воды преимущественно зависит от испарения.
Скорее всего, именно из-за этого и происходит эффект Мпембы. Возможно, в будущем ученым удастся полностью доказать это или привнести какие-то поправки к объяснению.
ФГБОУ ВПО ЯрГУ им. Университетский колледж
Исследование скорости остывания воды в сосуде
при различных условиях
Игровой номер команды:
Краткая характеристика параметров исследования
Понятие температуры тела представляется на первый взгляд простым и понятным. Из повседневного опыта каждый знает, что бывают тела горячие и холодные.
Опыты и наблюдения показывают, что при контакте двух тел, из которых одно мы воспринимаем как горячее, а другое как холодное, происходят изменения физических параметров как первого, так и второго тела. «Физическая величина, измеряемая термометром и одинаковая у всех тел или частей тела, находящихся в термодинамическом равновесии друг с другом, называется температурой». Когда термометр приводят в контакт с изучаемым телом, мы видим разного рода изменения: движется “столбик” жидкости, меняется объем газа и т. п. Но вскоре между термометром и телом обязательно наступает термодинамическое равновесие – состояние, при котором остаются постоянными все величины, характеризующие эти тела: их массы, объемы, давления и так далее. С этого момента термометр показывает не только свою температуру, но и температуру изучаемого тела. В повседневной жизни наиболее распространен способ измерения температуры с помощью жидкостного термометра. Здесь для измерения температуры используется свойство жидкостей при нагревании расширяться. Для измерения температуры тела термометр приводят с ним в контакт, между телом и термометром осуществляется процесс теплопередачи до установления теплового равновесия. Чтобы процесс измерения не изменил заметно температуру тела, масса термометра должна быть значительно меньше массы тела, температура которого измеряется.
Практически все явления внешнего мира и различные изменения в человеческом организме сопровождаются изменением температуры. Явления теплообмена сопутствуют всей нашей повседневной жизни.
В конце 17 века известный английский физик Исаак Ньютон высказал гипотезу: «скорость теплообмена между двумя телами тем больше, чем сильнее отличаются их температуры (под скоростью теплообмена понимаем изменение температуры в единицу времени). Теплообмен всегда происходит в определённом направлении: от тел с более высокой температурой к телам с более низкой. В этом нас убеждают многочисленные наблюдения, даже на бытовом уровне (ложка в стакане с чаем нагревается, а чай остывает). Когда температура тел выравнивается, процесс теплообмена прекращается, т. е. наступает тепловое равновесие.
Простое и понятное утверждение о том, что самостоятельно теплота переходит только от тел с более высокой температурой к телам с меньшей температурой, а не наоборот, является одним из основополагающих законов в физике, и называются II законом термодинамики, этот закон был сформулирован в XVIII веке немецким учёным Рудольфом Клаузиусом.
Исследование скорости остывания воды в сосуде при различных условиях
Гипотеза: Мы предполагаем, что скорость остывания воды в сосуде зависит от слоя жидкости (масла, молока) налитого на поверхность воды.
Цель: Определить влияет ли поверхностным слой масла и поверхностный слой молока на скорость остывания воды.
Задачи:
1. Изучить явление остывания воды.
2. Определить зависимость температуры остывания воды с поверхностным слоем масла от времени, результаты записать в таблицу.
3. Определить зависимость температуры остывания воды с поверхностным слоем молока от времени, результаты записать в таблицу.
4. Построить графики зависимостей, провести анализ результатов.
5. Сделать вывод о том, какой поверхностный слой на воде оказывает большее влияние на скорость остывания воды.
Оборудование: стакана лабораторный, секундомер, термометр.
План эксперимента:
1. Определение цены деления шкалы термометра.
2. Провести измерение температуры воды при остывании через каждые 2 минуты.
3. Провести измерение температуры при остывании воды с поверхностным слоем масла через каждый 2 минуты.
4. Провести измерение температуры при остывании воды с поверхностным слоем молока через каждый 2 минуты.
5. Результаты измерений занести в таблицу.
6. По данным таблицы построить графики зависимостей температуры воды от времени.
7. Рассчитать скорость остывания воды для каждого случая.
8. Проанализировать результаты и дать их обоснования.
Сначала мы нагрели воду в 3 стаканах до температуры 71,5⁰С. Затем мы налили в один из стаканов растительное масло, в другой молоко. Масло распределилось по поверхности воды, образуя равномерный слой. Растительное масло – продукт, извлекаемый из растительного сырья и состоящее из жирных кислот и сопутствующих им веществ. Молоко перемешалось с водой (образуя эмульсию), это свидетельствовало о том, что молоко либо разбавлено водой и не соответствует заявленной на упаковке жирности, либо является изготовленным из сухого продукта и в том и другом случае физические свойства молока изменяются. Натуральное молоко неразбавленное водой в воде собирается сгустком и некоторое время не растворяется. Чтобы определить время остывания жидкостей, мы фиксировали температуру остывания через каждые 2 минуты.
Таблица. Исследование времени остывания жидкостей.
Источник